
AA 274A: Principles of Robot Autonomy I

Section 3 (In-person): Introduction to Turtlebot Hardware and

Gazebo

Our goals for this section:

1. Become familiar with the Turtlebot hardware.

2. Gain a basic understanding of the Turtlebot software.

3. Use basic tools for interacting with the Turtlebot.

1 The Turtlebot Hardware

Welcome to the robot portion of the course! In front of you is a surprisingly expensive robot. SO PLEASE
BE CAREFUL WHEN HANDLING IT OR MOVING ANY OF THE WIRES!

2 The Turtlebot Software

Most of the forward-facing Turtlebot software you will work with is located in the asl turtlebot repository
on Github. To get it, go to ~/catkin ws/src on the provided laptop and if the asl turtlebot repository
doesn’t already exist, run:

1 # run this command on the laptop

2 git clone https :// github.com/StanfordASL/asl_turtlebot.git

or if the repository does exist, then cd into the directory and run:

1 # run this command on the laptop

2 git pull

to update to the latest code.

Since we downloaded a new catkin package, we need to rebuild the workspace by running the following from
the ~/catkin ws directory.

1 # run this command on the laptop

2 catkin_make

2.1 Turtlebot bring up

First, we must take some steps to configure the laptop in order to be able to connect to a TurtleBot. You
will see rostb3.sh and roslocal.sh in the asl turtlebot folder. These files are important for telling your

1

Stanford Aeronautics & Astronautics Fall 2021

computer where roscore lives. Specifically, for the laptop to communicate (send/receive messages) with
the robot, it needs to know the network address of the robot. To do so, three environment variables are
important: ROS MASTER URI, ROS HOSTNAME, and ROS IP.

We will now set up these scripts so it’s easy to switch between them.

1. Connect to the correct network. (The TA will tell you which one it is.)

2. Edit rostb3.sh accordingly: define TURTLEBOT NAME at the start of the script. The name of your
turtlebot is printed on a sticker on the physical robot.

3. Source rostb3.sh.

1 # run this command on the laptop

2 source rostb3.sh

4. Open your .bashrc with a text editor. All the shell commands in this file will get run whenever you
open a terminal. Add the following lines to the end of the file:

1 # run these commands on the laptop

2 alias rostb3=’source ∼/catkin_ws/src/asl_turtlebot/rostb3.sh ’
3 alias roslocal=’source ∼/catkin_ws/src/asl_turtlebot/roslocal.sh ’
4 export TURTLEBOT3_MODEL=burger

The TURTLETBOT3 MODEL should remain burger, do not change this. IMPORTANT: This will create
an alias for rostb3 and roslocal. If roscore is to run on the TurtleBot, and you want to run nodes
from your computer (not ssh), you must type rostb3 EVERY TIME you open a terminal window.
Otherwise, if you want to run things locally on your machine, you should run roslocal.

5. For these modifications to take effect in the current terminal, run:

1 # run this command on the laptop

2 source ∼/. bashrc

Next, in a terminal window, ssh into the TurtleBot using:

1 # run this command on the laptop

2 ssh aa274@ <TurtleBot Name >. local

with the password aa274. You don’t need the angle brackets (<>). This remotely logs into the onboard
robot computer. The necessary ROS packages and drivers for TurtleBot operation have been pre-installed
so we can go ahead and run:

1 # run this command on the robot

2 roslaunch turtlebot3_bringup turtlebot3_core.launch

to launch core packages to start up the TurtleBot.

Problem 1: Once this is all running, which rostopics are available? Paste this list in your
submission.

3 TurtleBot Teleoperation

Now, let’s explore teleoperation with the TurtleBot.

1. ssh into the TurtleBot from another terminal window. We can start exploring the existing ROS topics.
What are all the messages that are being published right now? In particular, look at the odom topic.
What is the message type being published to this topic and what information is contained within these
messages? HINT: rostopic info odom might help.

2

Stanford Aeronautics & Astronautics Fall 2021

2. In a new terminal window, begin teleoperating the robot by running:

1 # run this command on the laptop

2 roslaunch turtlebot3_teleop turtlebot3_teleop_key.launch

Remember: every time you open a new terminal window on the laptop and want to send ROS commands
to the robot, you must type rostb3 first.

3. Try to teleop the TurtleBot back to (0, 0, 0).

Problem 2: What is the message type being published to odom and what information is con-
tained within these messages?

3.1 Pub to cmd vel

Using our code from last week’s section, create a publisher that publishes to the cmd vel topic and sends
a zero velocity signal at every timestep. The skeleton code for this included in this week’s code in the
vel publisher.py file. In particular, you should send out a message of type geometry msgs/Twist, with
information for how to populate it available online. Some resources that help are the ROS documentation
on it as well as our own TurtleBot code (look at line 155).

Problem 3: Paste your code in your submission, as well as any of its running output.

3.2 Sub to odom

Similarly, create a subscriber that subscribes to the odom topic and prints out what it receives. The skeleton
code for this is located in the odometry subscriber.py file.

Problem 4: Paste your code in your submission, as well as any of its running output.

4 Hardware Shutdown

When you have completed all of the hardware tasks, run the following commands in your ssh-ed terminal
window:

1 # run this command on the robot

2 sudo shutdown -h now

with the same password you used to log in: aa274. This should log out all windows that were ssh-ed into
the robot. Wait 4-5 seconds, then flip the power switch on the powerboard to ”OFF”.

5 Transfer to Genbu

Because the final project this year will be remote (in simulation), we need to know how to run everything
on the hardware and simulated on Genbu. The only files you need from the lab laptop are the subscriber
and publisher that you wrote. Genbu should be accessed from your own personal laptop.

The following commands run a simulated version of what you just did on the robot. See s3 virtual.pdf

for detailed instructions.

To get the asl turtlebot repository on your Genbu account, go to ~/catkin ws/src and run:

1 git clone https :// github.com/StanfordASL/asl_turtlebot.git

3

http://docs.ros.org/melodic/api/geometry_msgs/html/msg/Twist.html
http://docs.ros.org/melodic/api/geometry_msgs/html/msg/Twist.html
https://github.com/StanfordASL/asl_turtlebot/blob/master/scripts/keyboard_teleop.py

Stanford Aeronautics & Astronautics Fall 2021

Since we downloaded a new catkin package, we need to rebuild the workspace by running the following from
the ~/catkin ws directory.

1 catkin_make

5.1 Turtlebot bring up

Once logged in to Genbu, start roscore:

1 roscore -p $ROS_PORT

In a new terminal window, run the Gazebo environment:

1 roslaunch turtlebot3_gazebo turtlebot3_world.launch

5.2 Turtlebot teleoperation

1. In a new terminal window, begin teleoperating the robot by running:

1 roslaunch turtlebot3_teleop turtlebot3_teleop_key.launch

2. Try to teleop the TurtleBot back to (0, 0, 0).

5.3 Genbu Cleanup

When you’re about to log out, please shut down all of your running processes (like roscore or any pub-
lishers/subscribers) and clean up your catkin workspaces for the next groups. In particular, commit and
remove the code you wrote for the section as well as any catkin packages you created for the section within
catkin ws/src.

4

	The Turtlebot Hardware
	The Turtlebot Software
	Turtlebot bring up

	TurtleBot Teleoperation
	Pub to cmd_vel
	Sub to odom

	Hardware Shutdown
	Transfer to Genbu
	Turtlebot bring up
	Turtlebot teleoperation
	Genbu Cleanup

