
Principles of Robot Autonomy I
Image processing, feature detection, and feature description

IPRL



From 3D world to 2D images
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• So far we have focused on mapping 3D objects onto 2D images and 
on leveraging such mapping for scene reconstruction
• Next step: how to represent images and infer visual content?



Today’s lecture
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• Aim
• Learn fundamental tools in image processing for filtering and detecting 

similarities
• Learn how to detect and describe key features in images

• Readings
• Siegwart, Nourbakhsh, Scaramuzza. Introduction to Autonomous Mobile 

Robots. Sections 4.3 – 4.5.4.
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Representations in Computer Vision
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Example from Advances in Computer Vision – MIT – 6.869/6.819



Typical CV Pipeline
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Example
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Example
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Typical CV Pipeline

25-Oct-22 9

𝟖𝟏
𝟐𝟎
𝟒𝟓
𝟕𝟎
𝟗𝟔
𝟏𝟐𝟐
𝟏𝟒

Intermediate
Representation

Mathematical Model (e.g.
Classifier)

OutputInput Image



Traditional CV Pipeline
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Represent these cats with a cat detector!
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Example from CS331B: Representation Learning in Computer Vision



Represent these cats with a cat detector! (II)
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Example from CS331B: Representation Learning in Computer Vision



Represent these cats with a cat detector! (II)

25-Oct-22 13

Example from CS331B: Representation Learning in Computer Vision



Represent these cats with a cat detector! (III)
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Example from CS331B: Representation Learning in Computer Vision



Represent these cats with a cat detector! (IV)
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Example from CS331B: Representation Learning in Computer Vision



Summary of Traditional Components
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Color 
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Felzenszwalb et al. 2010.
Dalal and Triggs, 2005.
Beis and Lowe, 1997.

Example from CS331B: Representation Learning in Computer Vision



Traditional CV Pipeline
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Example from Advances in Computer Vision – MIT – 6.869/6.819



Traditional CV Pipeline
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Example from Advances in Computer Vision – MIT – 6.869/6.819



How do you interpret what the network has 
learned?
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Example from Advances in Computer Vision – MIT – 6.869/6.819



Visualizing and Understanding CNNs
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Example from Advances in Computer Vision – MIT – 6.869/6.819



Visualizing and Understanding CNNs
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Example from Advances in Computer Vision – MIT – 6.869/6.819



Visualizing and Understanding CNNs
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Example from Advances in Computer Vision – MIT – 6.869/6.819



Visualizing and Understanding CNNs
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Example from Advances in Computer Vision – MIT – 6.869/6.819



Visualizing and Understanding CNNs
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Example from Advances in Computer Vision – MIT – 6.869/6.819



How to represent images?
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Image processing pipeline
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1. Signal treatment / filtering

2. Feature detection (e.g., DoG)

3. Feature description (e.g., SIFT)

4. Higher-level processing
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Image filtering
• Filtering: process of accepting  / rejecting certain frequency 

components
• Starting point is to view images as functions 𝐼: 𝑎, 𝑏 × 𝑐, 𝑑 → [0, 𝐿], 

where 𝐼(𝑥, 𝑦) represents intensity at position (𝑥, 𝑦)
• A color image would give rise to a vector function with 3 components
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Represented as a matrix

i

j
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Spatial filters
• A spatial filter consists of

1. A neighborhood 𝑆*+ of pixels around the point (𝑥, 𝑦) under examination
2. A predefined operation F that is performed on the image pixels within 𝑆*+
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Linear spatial filters

• Filters can be linear or non-linear
• We will focus on linear spatial filters

• Filter F (of size (2𝑁 + 1)×(2𝑀 + 1)) is usually called a mask, kernel, 
or window
• Dealing with boundaries: e.g., pad, crop, extend, or wrap
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Filtered image Original imageFilter mask
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Filter example #1: moving average

• The moving average filter returns the average of the pixels in the mask
• Achieves a smoothing effect (removes sharp features)
• E.g., for a normalized 3×3 mask
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Generated with a 5x5 mask
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Filter example #2: Gaussian smoothing 

• Gaussian function

• To obtain the mask, sample the function about its center
• E.g., for a normalized 3×3 mask with 𝜎 = 0.85
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Convolution
• Still a linear filter, defined as

• Same as correlation, but with negative signs for the filter indices
• Correlation and convolution are identical when the filter is symmetric 
• Convolution enjoys the associativity property

• Example: smooth image & take derivative = convolve derivative filter 
with Gaussian filter & convolve the resulting filter with the image 
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Separability of masks

• A mask is separable if it can be broken down into the convolution of 
two kernels 

• If a mask is separable into “smaller” masks, then it is often cheaper to 
apply 𝐹! followed by 𝐹", rather than 𝐹 directly
• Special case: mask representable as outer product of two vectors 

(equivalent to two-dimensional convolution of those two vectors)
• If mask is 𝑀×𝑀, and image has size 𝑤×ℎ, then complexity is
• 𝑂(𝑀,𝑤ℎ) with no separability
• 𝑂(2𝑀𝑤ℎ) with separability into outer product of two vectors
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Example of separable masks

• Moving average

• Gaussian smoothing
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Differentiation
• Derivative of discrete function (centered difference)

• Derivative as a convolution operation; e.g., Sobel masks:
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Note: masks are mirrored
In convolution

Along x direction Along y direction

<latexit sha1_base64="3Zk9tv57VcuF+IvkAD2n1RMtoqM="></latexit>
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Similarity measures
• Filtering can also be used to determine similarity across images (e.g., 

to detect correspondences)
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Sum of absolute differences

Sum of squared differences

10/25/22



Detectors

• Goal: detect local features, i.e., image patterns that differ from 
immediate neighborhood in terms of intensity, color, or texture

• We will focus on
• Edge detectors
• Corner detectors
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Use of detectors/descriptors: examples
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Estimating homographic transformations

Panorama stitching Object detection

Stereo reconstruction
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Edge detectors 
• Edge: region in an image where there is a significant change in 

intensity values along one direction, and negligible change along the 
orthogonal direction
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In 1D In 2D

Magnitude of 1st order derivative is large,
2nd order derivative is equal to zero
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Criteria for “good” edge detection

• Accuracy: minimize false positives and negatives

• Localization: edges must be detected as close as possible to the true 
edges

• Single response: detect one edge per real edge in the image
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Strategy to design an edge detector

• Two steps:
1. Smoothing: smooth the image to reduce noise prior to differentiation (step 2)
2. Differentiation: take derivatives along x and y directions to find locations with 

high gradients
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1D case: differentiation without smoothing
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1D case: differentiation with smoothing
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Edges occur at 
maxima or 
minima of 𝑠′(𝑥)
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A better implementation
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• Convolution theorem:
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Edge detection in 2D 

1. Find the gradient of smoothed image in both directions

2. Compute the magnitude                                     and discard pixels 
below a certain threshold

3. Non-maximum suppression: identify local maxima of  
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Derivative of Gaussian filter
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Canny edge detector
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Suppression
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Corner detectors

Key criteria for “good” corner detectors
1. Repeatability: same feature can be found in multiple images despite 

geometric and photometric transformations

2. Distinctiveness: information carried by the patch surrounding the 
feature should be as distinctive as possible

AA 274 | Lecture 910/25/22



Repeatability
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Without repeatability, matching is impossible
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Distinctiveness
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Without distinctiveness, it is not possible to establish reliable 
correspondences; distinctiveness is key for having a useful descriptor 
10/25/22



Finding corners
• Corner: intersection of two or more edges
• Geometric intuition for corner detection: explore how intensity 

changes as we shift a window
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Flat: no changes in 
any direction

Edge: no change along
the edge direction

Corner: changes in 
all directions
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Harris detector: example
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Properties of Harris detectors
• Widely used
• Detection is invariant to
• Rotation -> geometric invariance
• Linear intensity changes  -> photometric invariance

• Detection is not invariant to
• Scale changes
• Geometric affine changes 
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Corner

All points classified as edges!
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Properties of Harris detectors
• Widely used
• Detection is invariant to
• Rotation -> geometric invariance
• Linear intensity changes  -> photometric invariance

• Detection is not invariant to
• Scale changes
• Geometric affine changes 
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Corner

All points classified as edges!
Scale-invariant detection, such as
1. Harris-Laplacian 
2. in SIFT (specifically, Difference of Gaussians (DoG))

10/25/22



Example Application of Corner Detector
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Difference of Gaussians (DoG)
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• Features are detected as local 
extrema in scale and space 
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Descriptors
• Goal: describe keypoints so that we can compare them across images or 

use them for object detection or matching

AA 274 | Lecture 9

• Desired properties:
• Invariance with respect to pose, scale, illumination, etc.
• Distinctiviness
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Simplest descriptor 
• Naïve descriptor: associate with a given keypoint an 𝑛×𝑚 window of 

pixel intensities centered at that keypoint
• Window can be normalized to make it invariant to illumination 
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Main drawbacks
1. Sensitive to pose
2. Sensitive to scale
3. Poorly distinctive
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Popular detectors / descriptors

• SIFT (Scale-Invariant Feature Transformation)
• Invariant to rotation and scale, but computationally demanding
• SIFT descriptor is a 128-dimensional vector!

• SURF
• FAST
• BRIEF
• ORB
• BRISK
• LIFT
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A case study for learning-based Descriptors
Dense Object Nets

Learning Dense Visual Object Descriptors
By and For Robotic Manipulation. CORL 2018

Slides adapted from CS326 by Kevin Zakka and Sriram Somasundaram

Peter R. Florence, Lucas Manuelli, Russ Tedrake
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A Brief History

Sparse Learned: LIFT

Sparse Engineered: SIFT Dense Learned



Why Dense?

Bachrach et. al.



Dense Descriptors

Input is an RGB image Output

D-dim descriptor 
for each pixel

Pay attention to the difference in Dimensionality



Dense Descriptors

Input is an RGB image Output



Network Architecture
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Single Object



Learned Dense Correspondences



Class consistent descriptors



Next time
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