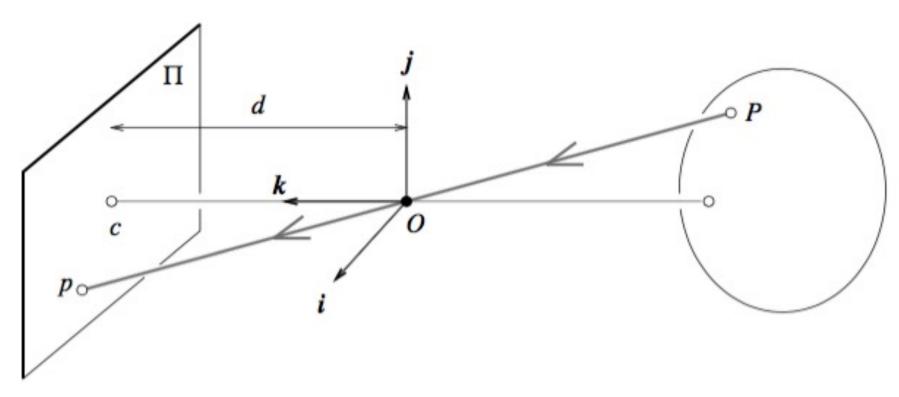
Principles of Robot Autonomy I

Image processing, feature detection, and feature description

From 3D world to 2D images

- So far we have focused on mapping 3D objects onto 2D images and on leveraging such mapping for scene reconstruction
- Next step: how to represent images and infer visual content?



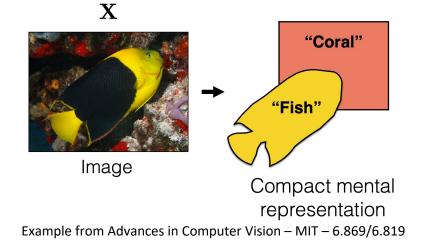
Today's lecture

- Aim
 - Learn fundamental tools in image processing for filtering and detecting similarities
 - Learn how to detect and describe key features in images
- Readings
 - Siegwart, Nourbakhsh, Scaramuzza. Introduction to Autonomous Mobile Robots. Sections 4.3 – 4.5.4.

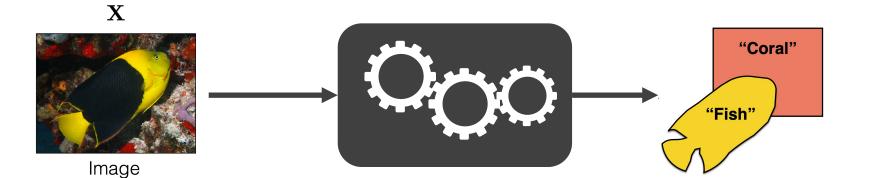
Representations in Computer Vision

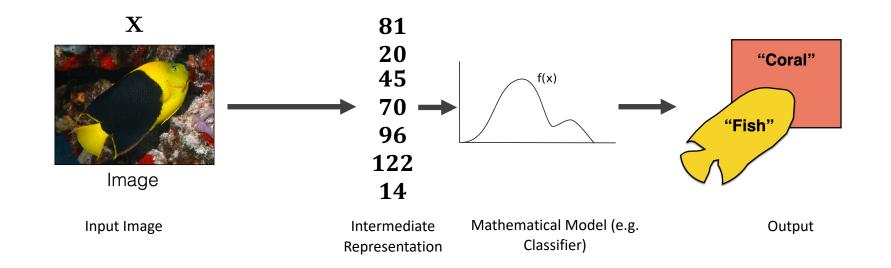
 Observed image
 Drawn from memory

[Bartlett, 1932] [Intraub & Richardson, 1989]

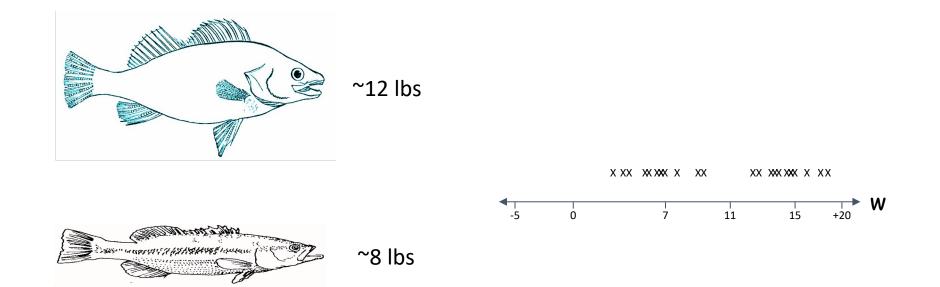


Typical CV Pipeline

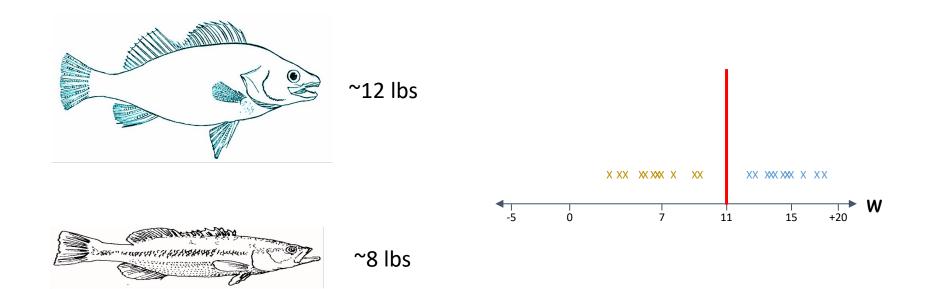




Example

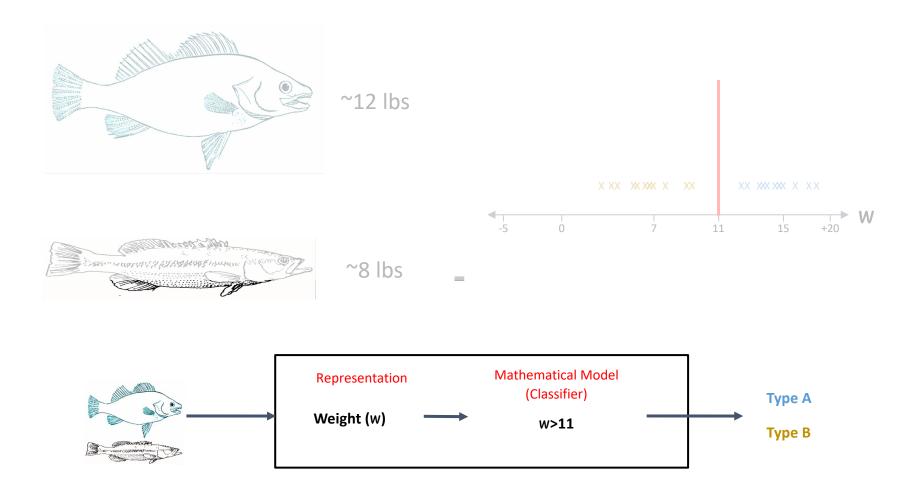


Example

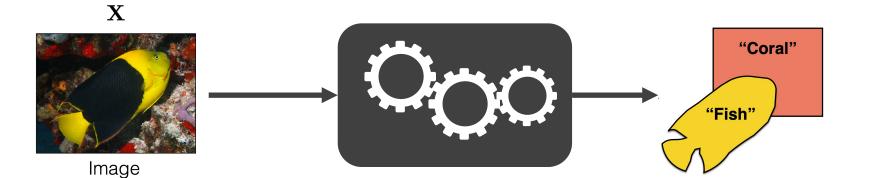


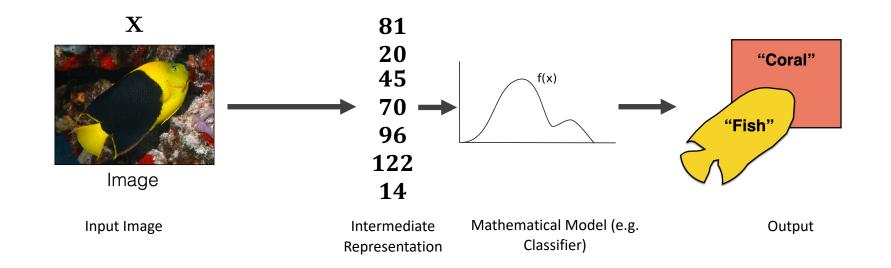
Example from CS331B: Representation Learning in Computer Vision

Example

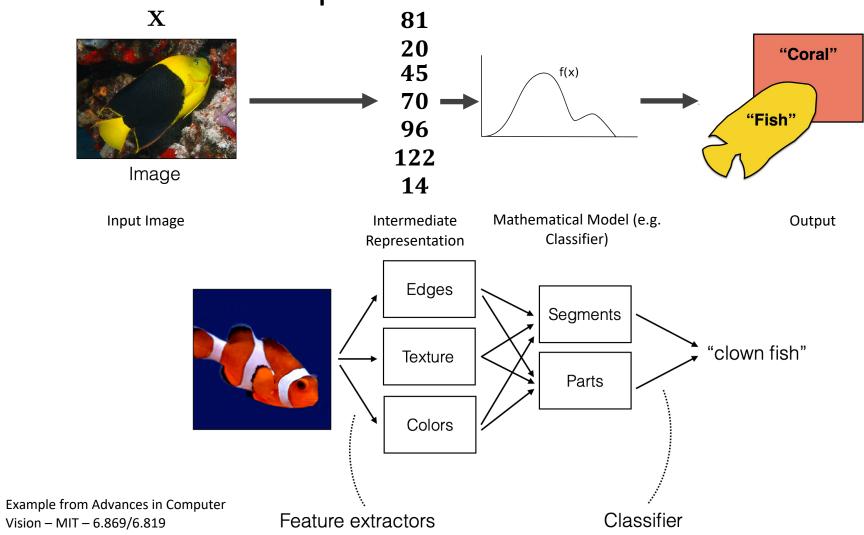


Typical CV Pipeline





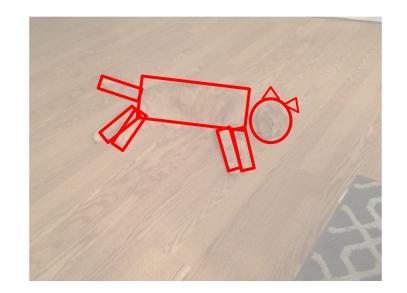
Traditional CV Pipeline



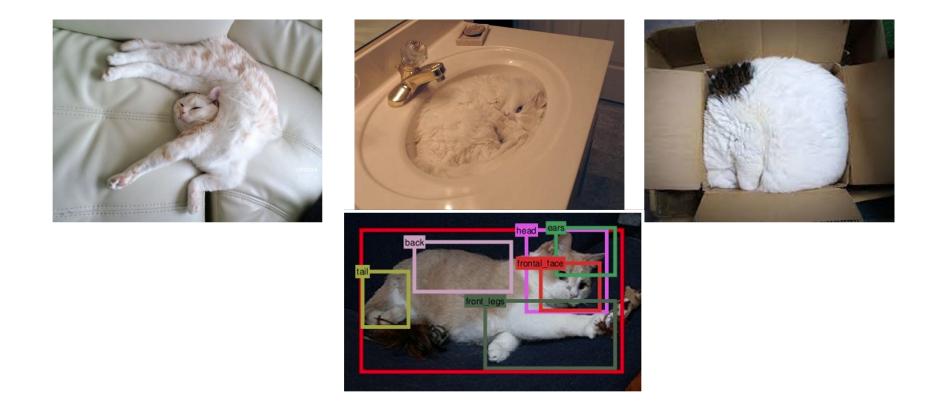
Represent these cats with a cat detector!

Represent these cats with a cat detector! (II)

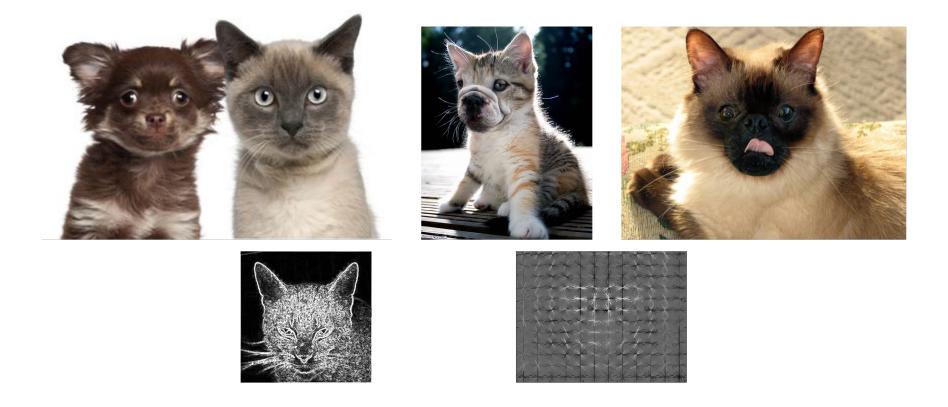
Represent these cats with a cat detector! (II)



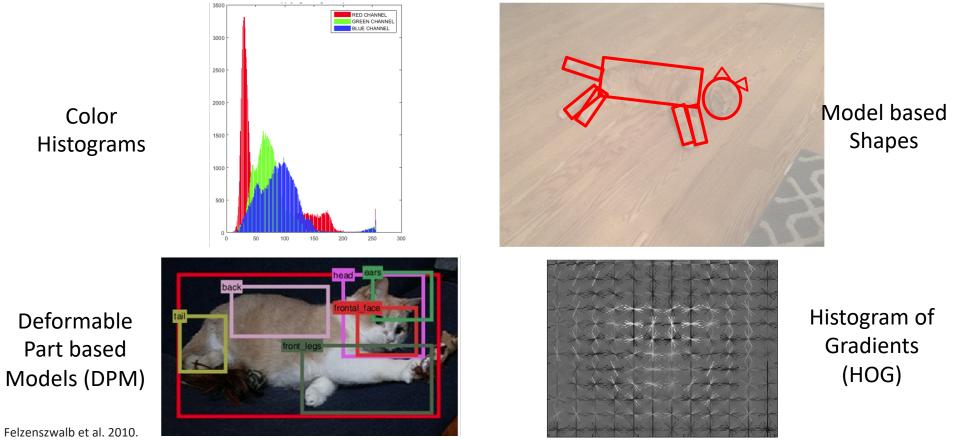
Represent these cats with a cat detector! (III)



Represent these cats with a cat detector! (IV)

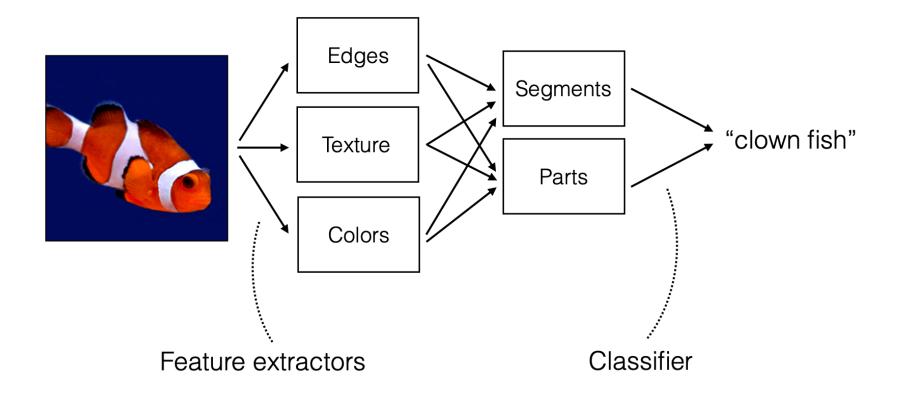


Summary of Traditional Components



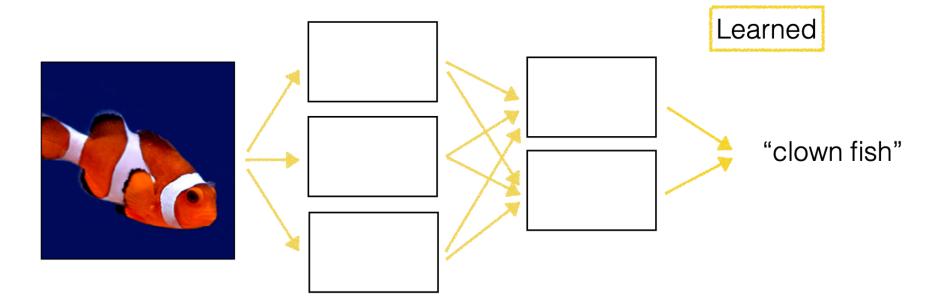
Dalal and Triggs, 2005. Beis and Lowe, 1997.

Traditional CV Pipeline



Example from Advances in Computer Vision – MIT – 6.869/6.819

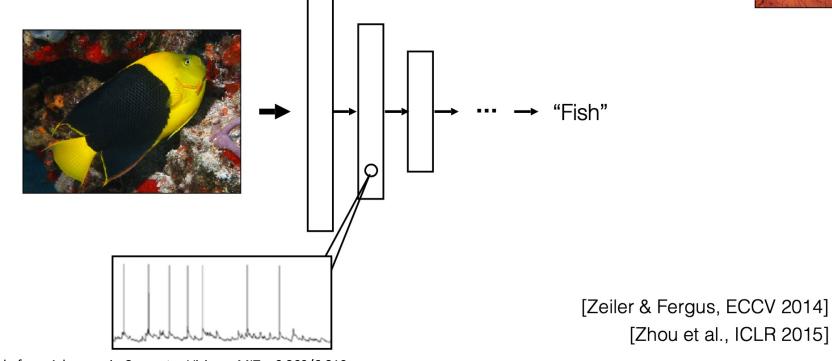
Traditional CV Pipeline



Example from Advances in Computer Vision – MIT – 6.869/6.819

How do you interpret what the network has learned?

Deep Net "Electrophysiology"



Example from Advances in Computer Vision - MIT - 6.869/6.819

[Zeiler and Fergus, 2014]

Gabor-like filters learned by layer 1

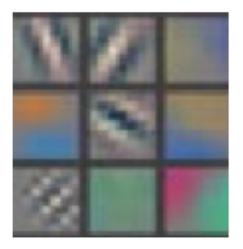


Image patches that activate each of the layer 1 filters most strongly

Example from Advances in Computer Vision – MIT – 6.869/6.819

[Zeiler and Fergus, 2014]

Image patches that activate each of the **layer 2** neurons most strongly



[Zeiler and Fergus, 2014]

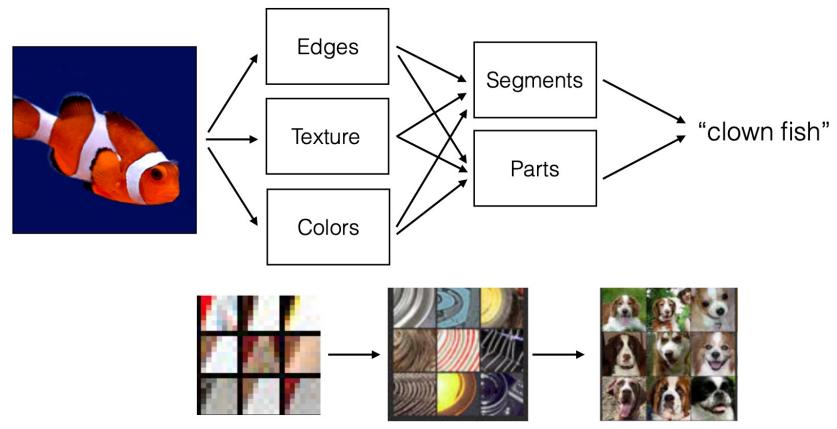
Image patches that activate each of the **layer 4** neurons most strongly

[Zeiler and Fergus, 2014]

Image patches that activate each of the **layer 5** neurons most strongly

Example from Advances in Computer Vision – MIT – 6.869/6.819

CNNs *learned* the classical visual recognition pipeline!



How to represent images?

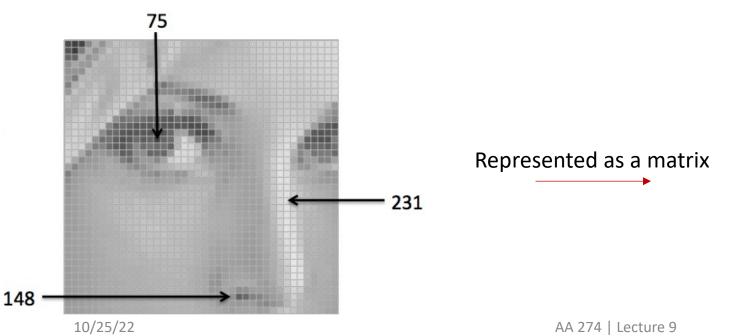
Image processing pipeline

1. Signal treatment / filtering

- 2. Feature detection (e.g., DoG)
- 3. Feature description (e.g., SIFT)
- 4. Higher-level processing

Image filtering

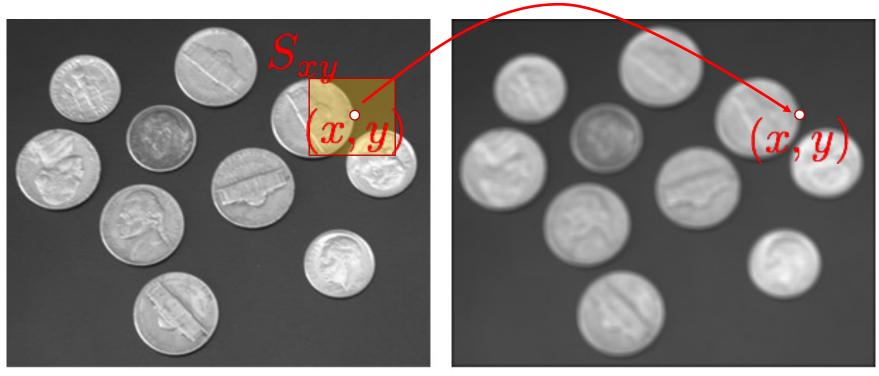
- Filtering: process of accepting / rejecting certain frequency components
- Starting point is to view images as functions $I: [a, b] \times [c, d] \rightarrow [0, L]$, where I(x, y) represents intensity at position (x, y)
- A color image would give rise to a vector function with 3 components



	j								
	88	82	84	88	85	83	80	93	102
¥	88	80	78	80	80	78	73	94	100
	85	79	80	78	77	74	65	91	99
	38	35	40	35	39	74	77	70	65
	20	25	23	28	37	69	64	60	57
	22	26	22	28	40	65	64	59	34
	24	28	24	30	37	60	58	56	66
	21	22	23	27	38	60	67	65	67
	23	22	22	25	38	59	64	67	66

Spatial filters

- A spatial filter consists of
 - 1. A neighborhood S_{xy} of pixels around the point (x, y) under examination
 - 2. A predefined operation F that is performed on the image pixels within S_{xy}



Linear spatial filters

- Filters can be linear or non-linear
- We will focus on linear spatial filters

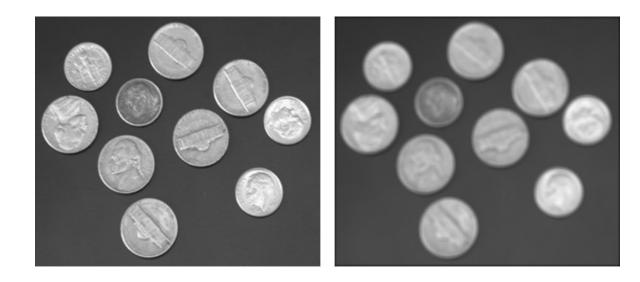
$$I'(x,y) = F \circ I = \sum_{i=-N}^{N} \sum_{j=-M}^{M} F(i,j)I(x+i,y+j)$$
Filtered image Filter mask Original image

- Filter F (of size $(2N + 1) \times (2M + 1)$) is usually called a mask, kernel, or window
- Dealing with boundaries: e.g., pad, crop, extend, or wrap

Filter example #1: moving average

- The moving average filter returns the average of the pixels in the mask
- Achieves a smoothing effect (removes sharp features)
- E.g., for a *normalized* 3×3 mask

$$F = \frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$



Generated with a 5x5 mask

Filter example #2: Gaussian smoothing

• Gaussian function

$$G_{\sigma}(x,y) = \frac{1}{2\pi\sigma^2} \exp\left(-\frac{x^2 + y^2}{2\sigma^2}\right)$$

- To obtain the mask, sample the function about its center
- E.g., for a *normalized* 3×3 mask with $\sigma = 0.85$

$$G = \frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$$

Convolution

• Still a linear filter, defined as

$$I'(x,y) = F * I = \sum_{i=-N}^{N} \sum_{j=-M}^{M} F(i,j)I(x-i,y-j)$$

- Same as correlation, but with negative signs for the filter indices
- Correlation and convolution are identical when the filter is symmetric
- Convolution enjoys the associativity property

$$F * (G * I) = (F * G) * I$$

• Example: smooth image & take derivative = convolve derivative filter with Gaussian filter & convolve the resulting filter with the image

Separability of masks

 A mask is separable if it can be broken down into the convolution of two kernels

$$F = F_1 * F_2$$

- If a mask is separable into "smaller" masks, then it is often cheaper to apply F_1 followed by F_2 , rather than F directly
- Special case: mask representable as outer product of two vectors (equivalent to two-dimensional convolution of those two vectors)
- If mask is $M \times M$, and image has size $w \times h$, then complexity is
 - $O(M^2wh)$ with no separability
 - O(2Mwh) with separability into outer product of two vectors

Example of separable masks

Moving average

$$F = \frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} = \frac{1}{9} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

• Gaussian smoothing

$$\begin{aligned} G_{\sigma}(x,y) &= \frac{1}{2\pi\sigma^2} \exp\left(-\frac{x^2 + y^2}{2\sigma^2}\right) \\ &= \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{x^2}{2\sigma^2}\right) \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{y^2}{2\sigma^2}\right) \\ &= g_{\sigma}(x) \cdot g_{\sigma}(y) \end{aligned}$$

AA 274 | Lecture 9

Differentiation

• Derivative of discrete function (centered difference)

$$\frac{\partial I}{\partial x} = I(x+1,y) - I(x-1,y) \qquad F_x = \begin{bmatrix} 1 & 0 & -1 \end{bmatrix}$$
$$\frac{\partial I}{\partial y} = I(x,y+1) - I(x,y-1) \qquad F_y = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$$

• Derivative as a convolution operation; e.g., Sobel masks:

Along x direction

$$S_x = \begin{bmatrix} 1 & 0 & -1 \\ 2 & 0 & -2 \\ 1 & 0 & -1 \end{bmatrix}$$

Along y direction

$$S_y = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix}$$

Note: masks are mirrored In convolution

10/25/22

AA 274 | Lecture 9

Similarity measures

 Filtering can also be used to determine similarity across images (e.g., to detect correspondences)

$$SAD = \sum_{i=-n}^{n} \sum_{j=-m}^{m} |I_1(x+i,y+j) - I_2(x'+i,y'+j)|$$
 Sum of absolute differences

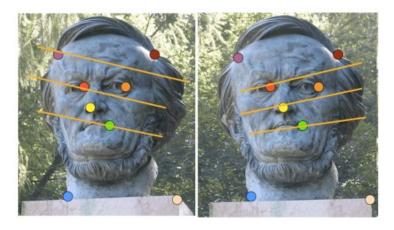
$$SSD = \sum_{i=-n}^n \sum_{j=-m}^m [I_1(x+i,y+j) - I_2(x'+i,y'+j)]^2$$
 . Sum of squared differences

Detectors

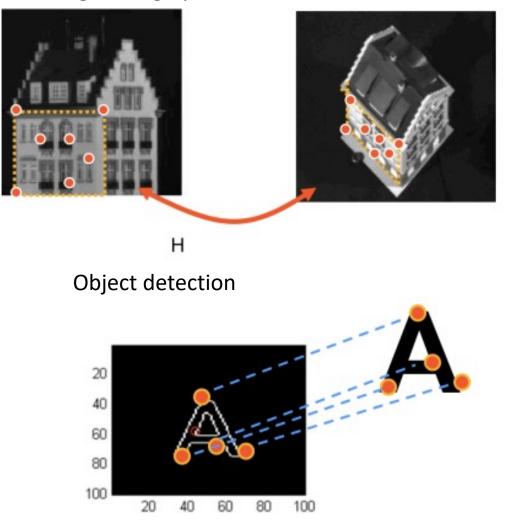
- Goal: detect local features, i.e., image patterns that differ from immediate neighborhood in terms of intensity, color, or texture
- We will focus on
 - Edge detectors
 - Corner detectors

Use of detectors/descriptors: examples

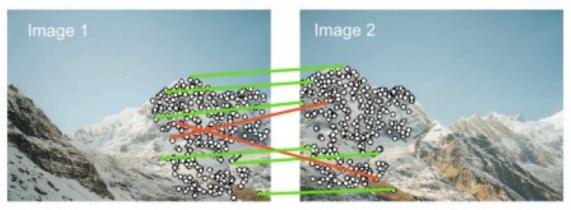
Stereo reconstruction



Estimating homographic transformations



Panorama stitching

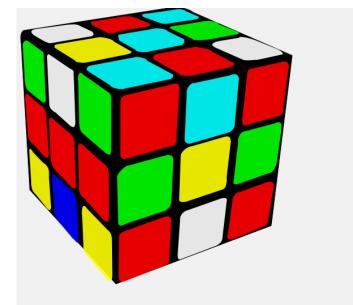


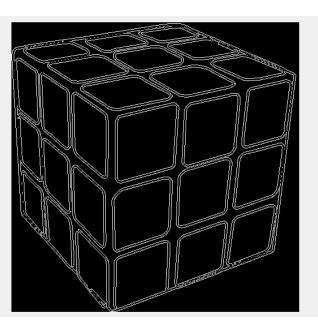
Edge detectors

 Edge: region in an image where there is a significant change in intensity values along one direction, and negligible change along the orthogonal direction

In 1D

Magnitude of 1st order derivative is large, 2nd order derivative is equal to zero In 2D





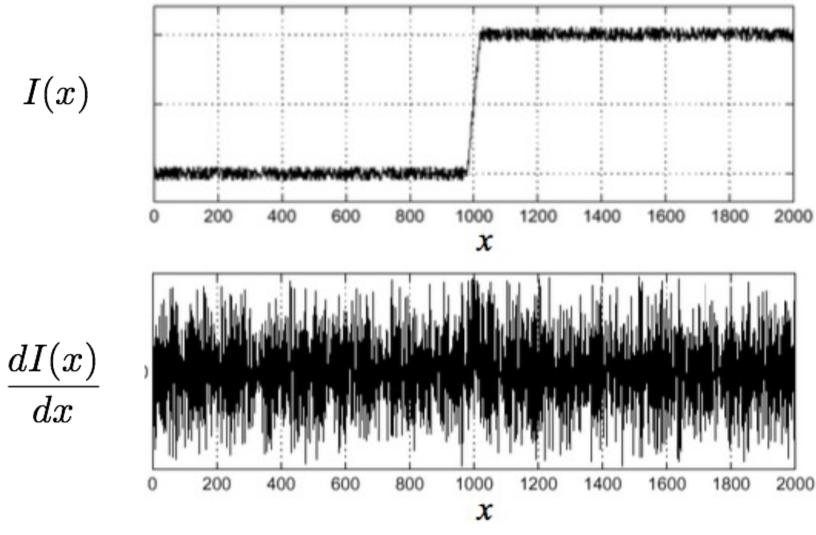
Criteria for "good" edge detection

- Accuracy: minimize false positives and negatives
- Localization: edges must be detected as close as possible to the true edges
- Single response: detect one edge per real edge in the image

Strategy to design an edge detector

- Two steps:
 - 1. Smoothing: smooth the image to reduce noise prior to differentiation (step 2)
 - 2. Differentiation: take derivatives along x and y directions to find locations with high gradients

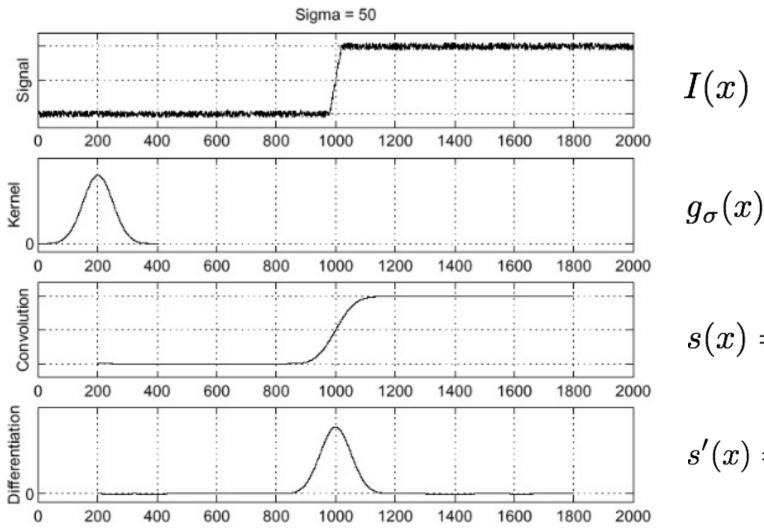
1D case: differentiation without smoothing



10/25/22

AA 274 | Lecture 9

1D case: differentiation with smoothing



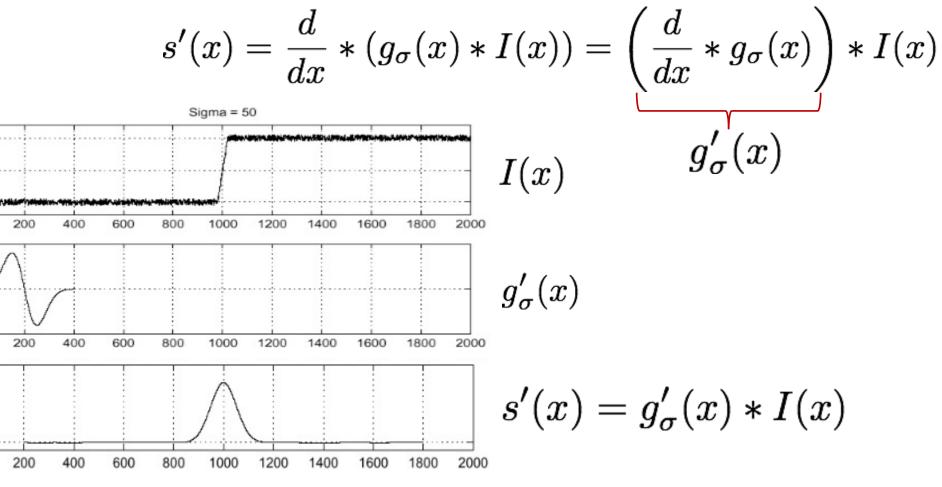
Edges occur at
maxima or
minima of
$$s'(x)$$

$$s(x) = g_{\sigma}(x) * I(x)$$

$$s'(x) = \frac{d}{dx} * s(x)$$

A better implementation

Convolution theorem:



Signal

Kernel

Differentiation

0

0

0

AA 274 | Lecture 9

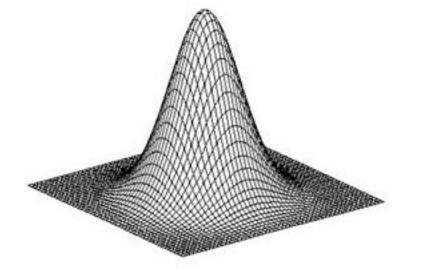
Edge detection in 2D

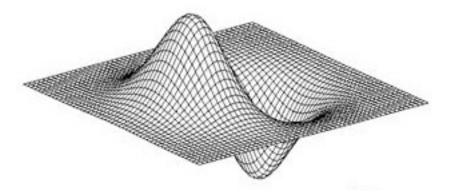
1. Find the gradient of smoothed image in both directions

$$\nabla S := \begin{bmatrix} \frac{\partial}{\partial x} * (G_{\sigma} * I) \\ \frac{\partial}{\partial y} * (G_{\sigma} * I) \end{bmatrix} = \begin{bmatrix} \left(\frac{\partial}{\partial x} * G_{\sigma}\right) * I \\ \left(\frac{\partial}{\partial y} * G_{\sigma}\right) * I \end{bmatrix} = \begin{bmatrix} G_{\sigma,x} * I \\ G_{\sigma,y} * I \end{bmatrix} := \begin{bmatrix} S_x \\ S_y \end{bmatrix}$$

- 2. Compute the magnitude $|\nabla S|=\sqrt{S_x^2+S_y^2}\,$ and discard pixels below a certain threshold
- 3. Non-maximum suppression: identify local maxima $\phi \nabla S |$

Derivative of Gaussian filter

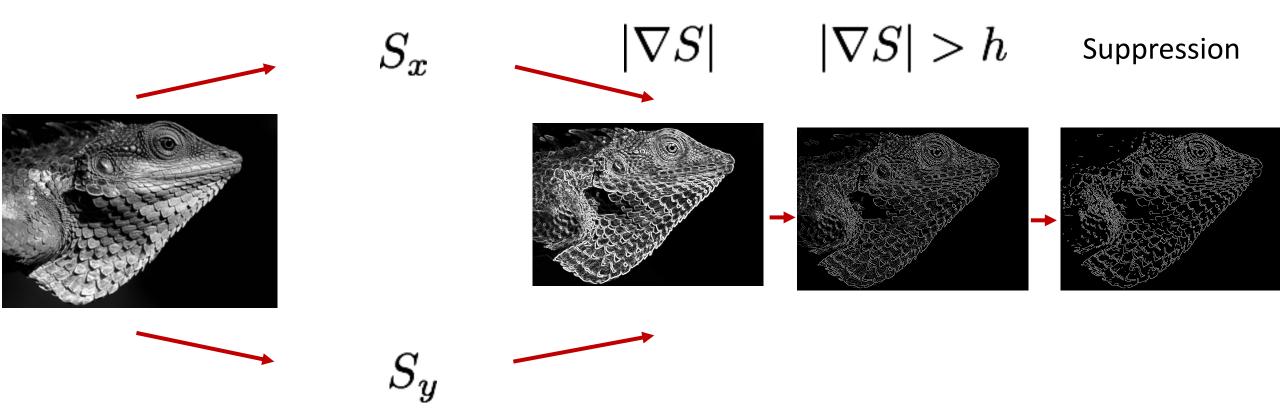




$$G_{\sigma}(x,y) = \frac{1}{2\pi\sigma^2} \exp\left(-\frac{x^2 + y^2}{2\sigma^2}\right)$$

$$\frac{\partial G_{\sigma}(x,y)}{\partial x}$$

Canny edge detector

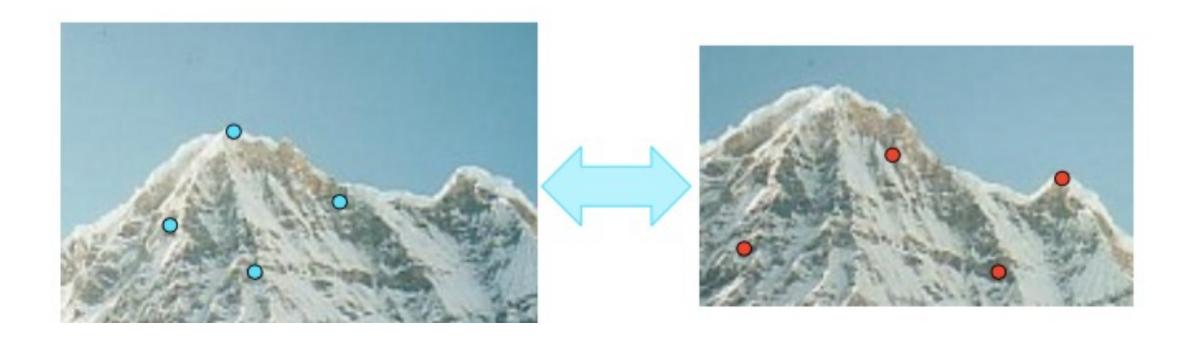


Corner detectors

Key criteria for "good" corner detectors

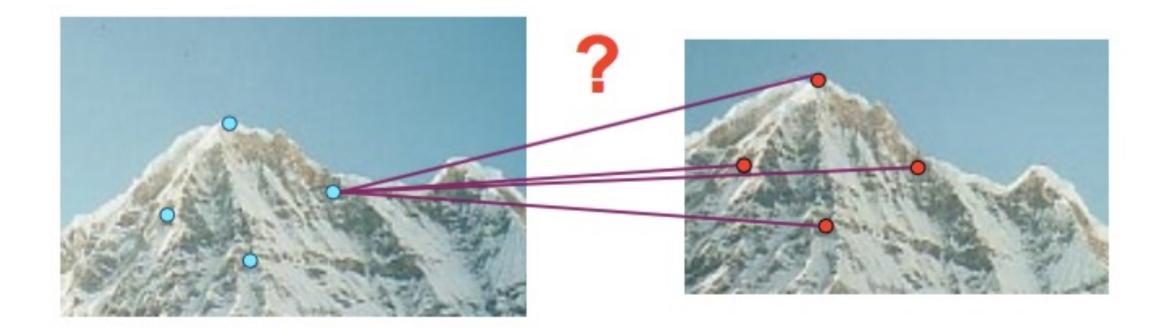
- 1. Repeatability: same feature can be found in multiple images despite geometric and photometric transformations
- 2. Distinctiveness: information carried by the patch surrounding the feature should be as distinctive as possible

Repeatability



Without repeatability, matching is impossible

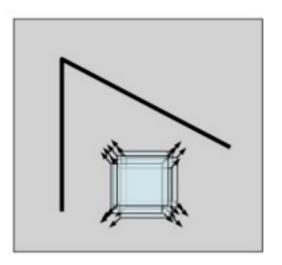
Distinctiveness



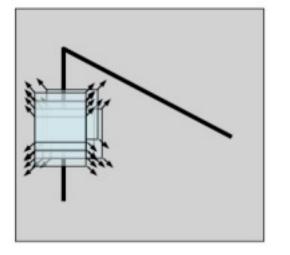
Without distinctiveness, it is not possible to establish reliable correspondences; distinctiveness is key for having a useful descriptor

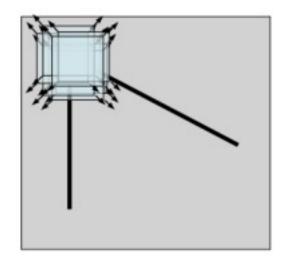
Finding corners

- Corner: intersection of two or more edges
- Geometric intuition for corner detection: explore how intensity changes as we shift a window



Flat: no changes in any direction





Edge: no change along the edge direction

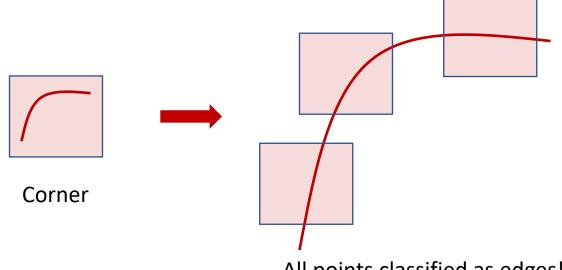
Corner: changes in all directions

10/25/22

Harris detector: example

Properties of Harris detectors

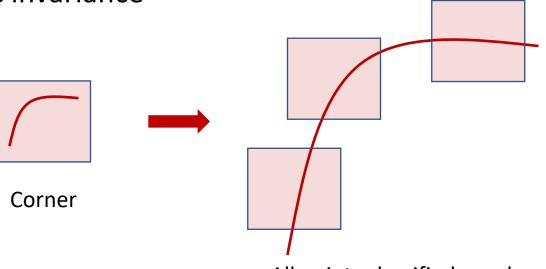
- Widely used
- Detection is invariant to
 - Rotation -> geometric invariance
 - Linear intensity changes -> photometric invariance
- Detection is not invariant to
 - Scale changes
 - Geometric affine changes



Properties of Harris detectors

- Widely used
- Detection is invariant to
 - Rotation -> geometric invariance
 - Linear intensity changes -> photometric invariance
- Detection is not invariant to
 - Scale changes
 - Geometric affine changes

Scale-invariant detection, such as

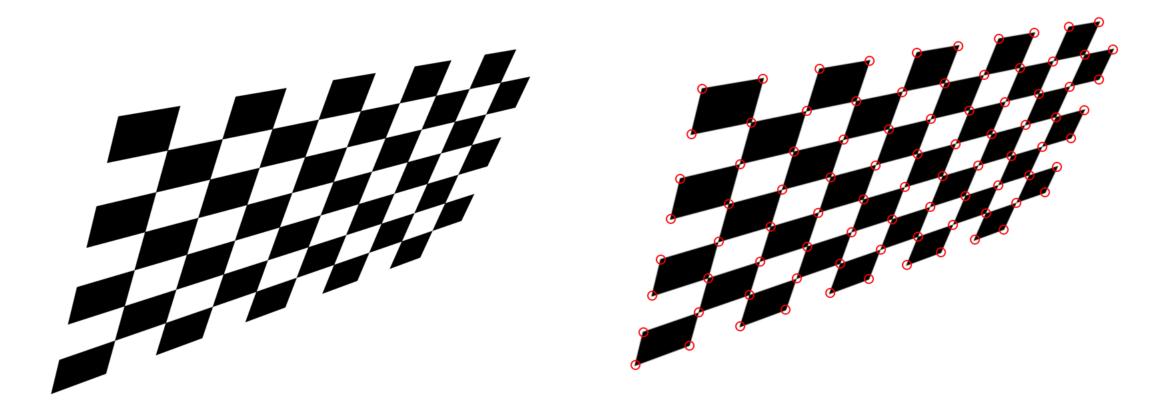


All points classified as edges!

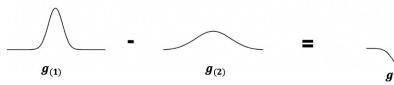
Harris-Laplacian
 in SIFT (specifically, Difference of Gaussians (DoG))

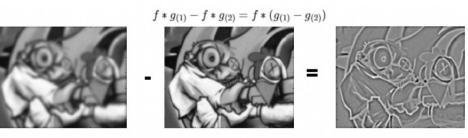
10/25/22

Example Application of Corner Detector

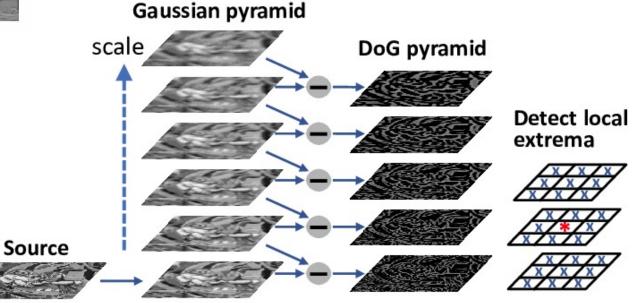


Difference of Gaussians (DoG)



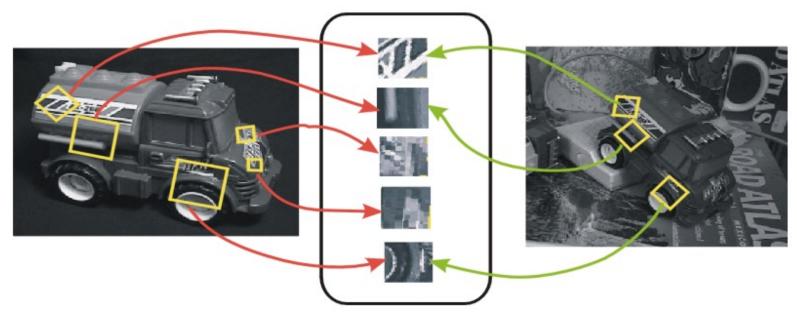


• Features are detected as local extrema in scale and space



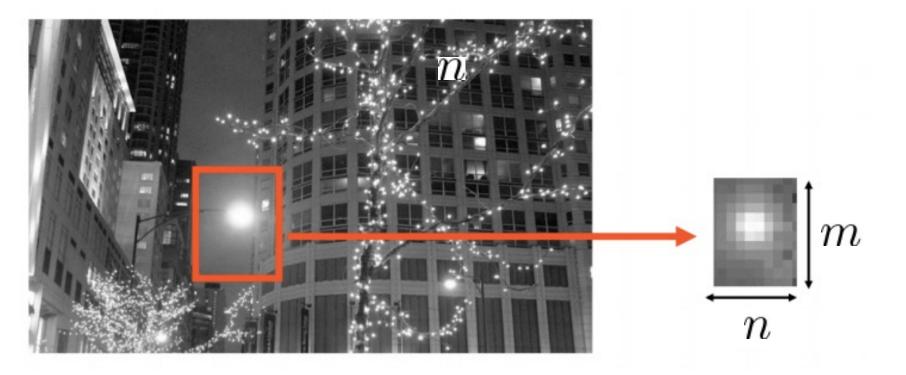
Descriptors

- Goal: *describe* keypoints so that we can compare them across images or use them for object detection or matching
- Desired properties:
 - Invariance with respect to pose, scale, illumination, etc.
 - Distinctiviness



Simplest descriptor

- Naïve descriptor: associate with a given keypoint an $n \times m$ window of pixel intensities centered at that keypoint
- Window can be normalized to make it invariant to illumination



Main drawbacks

- 1. Sensitive to pose
- 2. Sensitive to scale
- 3. Poorly distinctive

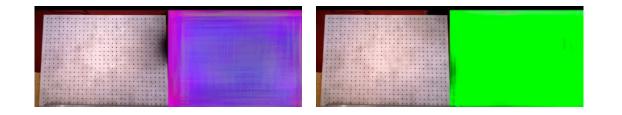
Popular detectors / descriptors

- SIFT (Scale-Invariant Feature Transformation)
 - Invariant to rotation and scale, but computationally demanding
 - SIFT descriptor is a 128-dimensional vector!
- SURF
- FAST
- BRIEF
- ORB
- BRISK
- LIFT

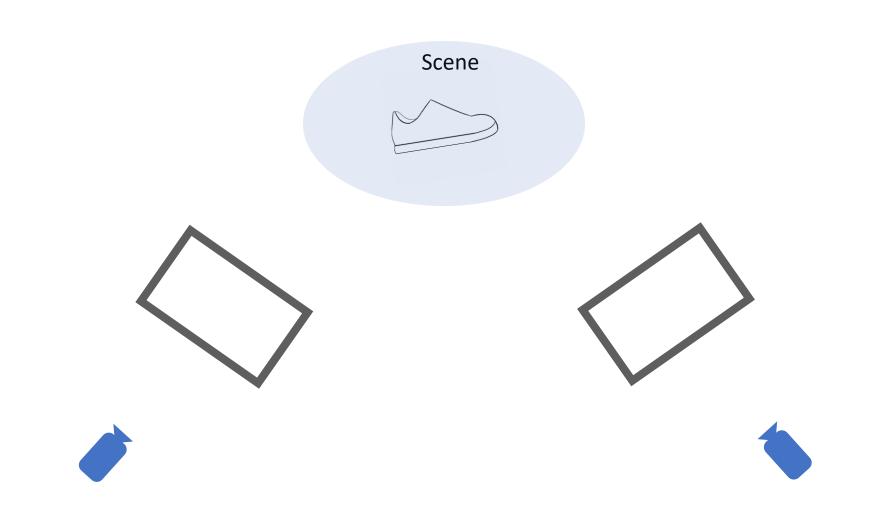
A case study for learning-based Descriptors Dense Object Nets

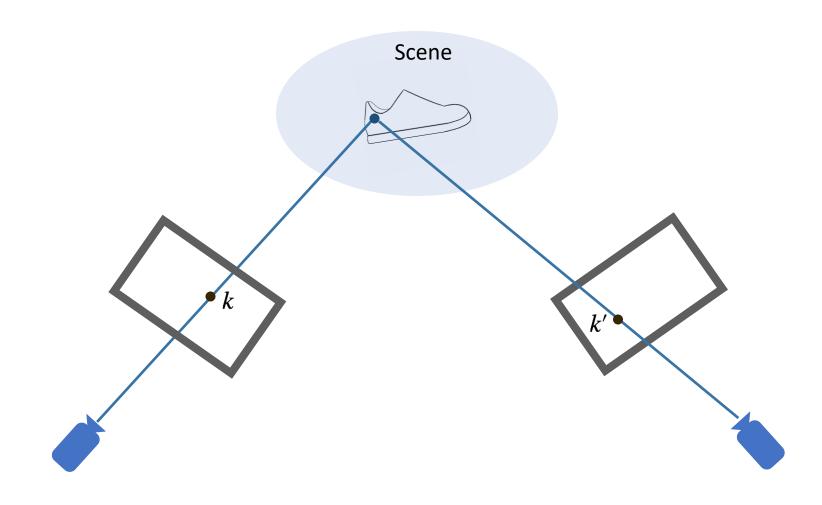
Learning *Dense* Visual Object *Descriptors By* and *For* Robotic Manipulation. CORL 2018

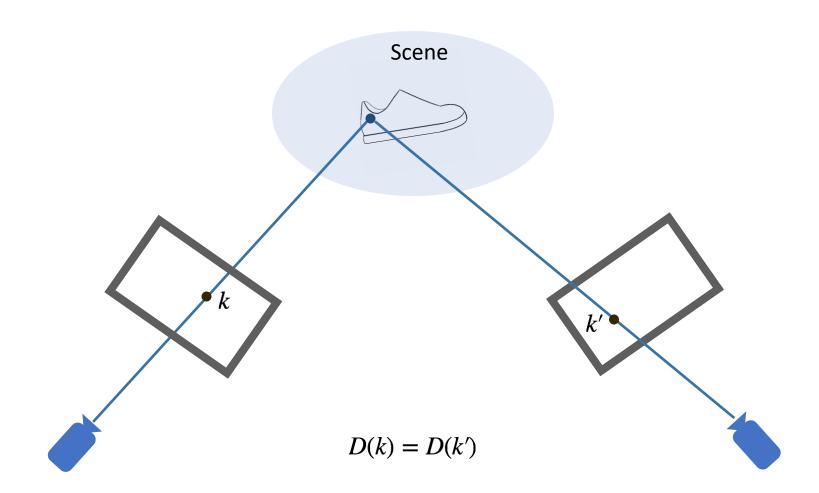
Peter R. Florence, Lucas Manuelli, Russ Tedrake



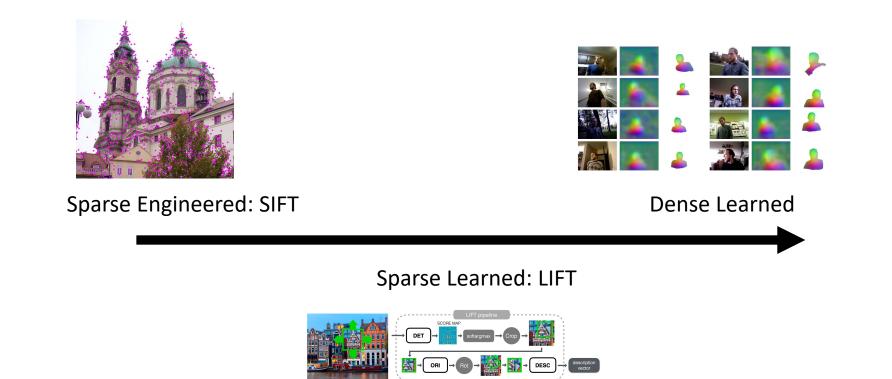
Slides adapted from CS326 by Kevin Zakka and Sriram Somasundaram







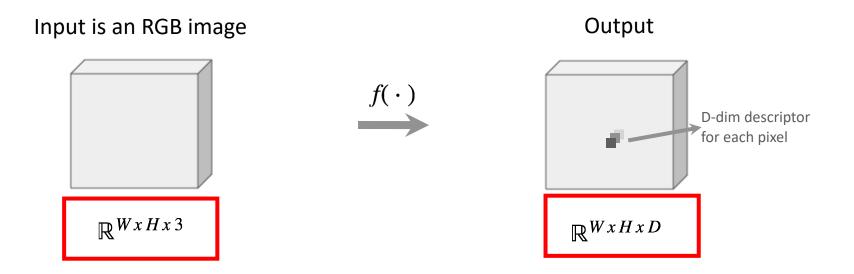
A Brief History



Why Dense?

Bachrach et. al.

Dense Descriptors



Pay attention to the difference in Dimensionality

Dense Descriptors

Input is an RGB image

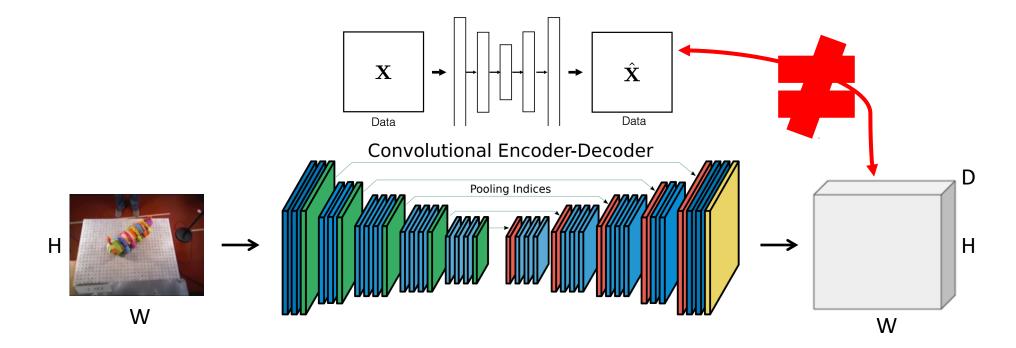
 \mathbb{R}^{WxHx3}

Output

 $f(\cdot)$

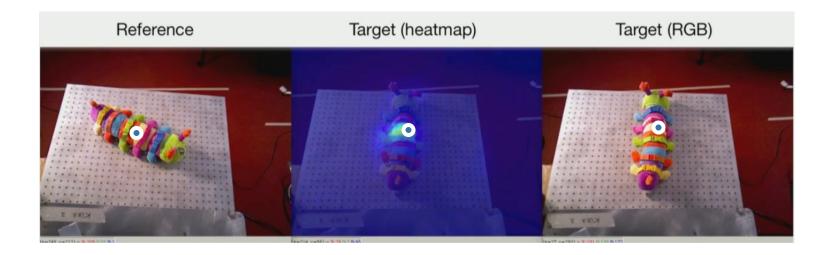
 \mathbb{R}^{WxHxD}

Network Architecture

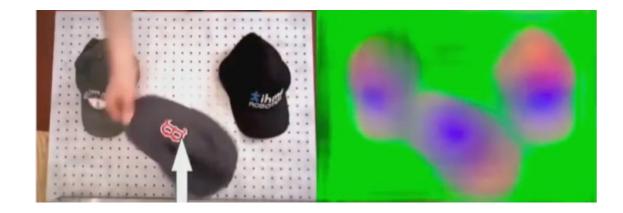


Single Object

Learned Dense Correspondences



Class consistent descriptors



Next time

