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Camera models and camera calibration

e Aim
e Learn how to calibrate a camera
* Learn about 3D reconstruction

* Readings

* SNS:4.2.3

* D. A. Forsyth and J. Ponce [FP]. Computer Vision: A Modern Approach (2nd
Edition). Prentice Hall, 2011. Chapter 1.

* R. Hartley and A. Zisserman [HZ]. Multiple View Geometry in Computer
Vision. Academic Press, 2002. Chapter 6.1.

e Z.Zhang. A Flexible New Technique for Camera Calibration. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2000.
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Step 3

* In previous lecture, we have derived a mapping between a point P in
the 3D camera reference frame to a point p in the 2D image plane

* Last step is to include in our mapping an additional transformation to
account for the difference between the world frame and the 3D
camera reference frame
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Rigid transformations
PC =1+ q
! q = R Py
|

where R is the rotation matrix
relating camera and world
frames

Ciw i jwr i Few -]
R=|iw-J Jw-J kw-J
iw k& jw-k k- k.

= Po=t+ R Py
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Rigid transformations in
nomogeneous coordinates

(%) =los ()

Point P. in homogeneous Point P,, in homogeneous
coordinates coordinates
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Perspective projection equation

* Collecting all results

R t
ph — [K 03><1]Pg’ S K[I3x3 03x1] [ :| PI;L/
01x3 1

* Hence Projection matrix M

p" = K[R _t|Py

Intrinsic parameters Extrinsic parameters

* Degrees of freedom: 4 for K (or 5 if we also include skewness), 3 for R,
and 3 for t. Total is 10 (or 11 if we include skewness)
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e
Camera calibration:
direct linear transformation method

* Goal: find the intrinsic and extrinsic parameters of the camera

PSL

e Strategy: given known
Pl correspondences p; < Py, ;,
/: compute unknown
1o, . &1 /) parameters K, R, t by applying
E = — i g —_ ¥ perspective projection

lW

Py 1, Py 2, ..., Py n With known positions in world frame
D1, D2, ..., Pn With known positions in image frame
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Step 1

1Xx4 vector

* First consider combined parameters \,
e
pt =MP}y,, i=1,...,n, where M=K[R t]= |m;
mgs

 This gives rise to 2n component-wise equations, fori =1, ...,n

mq - Pé"v,b-
Ui = ’ h h
h . . — . j—
ms - Py, . u; (m3 - Py ;) —my - Py, =0
my - P : ph oy — P —0
o — 2 T Wi v; (ms3 - Pyy;) —ma - Py, =
.=

m3 'P{/{,/,'l:
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Calibration problem

 Stacking all equations together _

Pm =0, where m = [ m;
RN T

2n x 12 matrix of 12 x 1 vector of 19 x 1
known coefficients unknown coefficients

e P contains in block form the known coefficients stemming from the
given correspondences

* To estimate 11 coefficients, we need at least 6 correspondences
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Solution

* To find non-zero solution

min  [|[Pm]|?
m€R12

subject to  [|m||* =1

* Solution: select eigenvector of PT P with the smallest eigenvalue
* Readily computed via SVD (singular value decomposition)
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Step 2

* Next, we need to extract the camera parameters, i.e., we want to
factorize M as

M =[KR Kt

 This can be done efficiently (indeed, explicitly) by using RQ
factorization, whereby the submatrix M,.3 ;.3 is decomposed into the
product of an upper triangular matrix K and a rotation matrix R

* Calibration will be investigated in Problem 1 in HW3
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Radial distortion

» So far, we have assumed that a linear model is an accurate model of
the imaging process

* For real (non-pinhole) lenses this assumption will not hold

Credit: SNS

No distortion Barrel distortion Pincushion distortion
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Measuring depth

.. o

Line of sight i
Lor \ p" = K[R t|P}
RN e

Homogeneous coordinates

/

Once the camera is calibrated, can we measure the location of a point P
in 3D given its known observation p?
* No: one can only say that P is located somewhere along the line joining p and O!
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Issues with recovering structure
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Recovering structure

 Structure: 3D scene to be reconstructed by having access to 2D images

* Common methods
1. Through recognition of landmarks (e.g., orthogonal walls)

2. Depth from focus: determines distance to one point by taking multiple
images with better and better focus

3. Stereo vision: processes two distinct images taken at the same time and
assumes that the relative pose between the two cameras is known

4. Structure from motion: processes two images taken with the same or
different cameras at different times and from different unknown positions
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Depth from focus

|

< P
l| "
F F | 1 1 1 Thin lens
2 IIO = ; + Z — ? equation
- lFT’
p # <
be 4 ,.LL -Z -

Credit: FP Chapter 1

* Take several images until the projection of point P is in focus; let z
denote the distance at which the image is in focus

 Since we know z and f, through the thin lens equation we obtain Z
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Stereopsis, or why we have two eyes
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Binocular reconstruction

* Given: calibrated stereo rig and two image
matching points p and p’
| * Find corresponding scene point by
0. 0 intersecting the two rays O_p and O'p’
(process known as triangulation)
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Approximate triangulation

R * Due to noise, triangulation
_"{p problem is often solved as
N finding the point Q with
N images g and g’ that
” N minimizes
Al 2 2
d*(p,q) +d°(p',q")
[
Re-projection error
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Next time: Image processing,
feature detection & description
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