Principles of Robot Autonomy |

Motion planning I: graph search methods

:; A Stanford

<=7/ University




Logistics

Masks
Homework 1 due today (11:59PM)
Homework 2 will be released today

Students are being moved off the waitlist
If you got a permission code, please use it right now if you haven’t yet
Any issues: Let Brian know!
Decided to drop? Let Brian know!

We cannot answer e-mails of students with their spots on the unified
waitlist

Check out the lecture notes!

10/12/22 AA 274A | Lecture 3 2



The see-think-act cycle

Knowledge o
Localization

Map Building

environmental model
IocaIImap

Information
extraction

raw data

Sensing

10/12/22

P
position Defision makin
global map otion planning

trajectory

v

>

See-think-act

Trajectory

execution

actuator
commands

Actuation

Real world
environment

AA 274 | Lecture 5

Mission goals




Motion planning

Compute sequence of actions that drives a robot
from an initial condition to a terminal condition

while avoiding obstacles, respecting motion A\
constraints, and possibly optimizing a cost function

* Aim
* Introduction to motion planning
* Learn about search-based methods for motion planning

* Readings:
 D. Bertsekas. Dynamic Programming and Optimal Control, Vol I. Section 2.3.
 S. LaValle. Planning Algorithms. Sections 6.1-6.3, 6.5.

10/12/22 AA 274 | Lecture 5 4



The see-think-act cycle

Knowledge o . o ) Mission goals
Localization position Decisi aking
Map Building global map Motion planning
environmental model trajectory
local map
| v
Information > Trajectory
extraction execution
actuator
raw data . commands
| See-think-act
Sensing Actuation

Real world
environment

10/12/22 AA 274 | Lecture 5 5






Examples from:
https://ompl.kavrakilab.org/gallery.html

10/12/22 AA 274 | Lecture 5 7


https://ompl.kavrakilab.org/gallery.html

More examples of motion planning

Steering autonomous vehicles

Controlling humanoid robot '
Surgery planning

Protein folding

10/12/22 AA 274 | Lecture 5




Some history

- Formally defined in the 1970s
- Development of exact, combinatorial solutions in the 1980s
- Development of sampling-based methods in the 1990s

« Deployment on real-time systems in the 2000s

Current research: inclusion of differential and logical constraints,
planning under uncertainty, parallel implementation, feedback
plans and more

10/12/22 AA 274 | Lecture 5 9



Simplest setup

« Assume 2D workspace: W C R?
* O C W isthe obstacle region with polygonal boundary
* Robotis arigid polygon

* Problem: given initial placement of robot, compute how to gradually move itinto a
desired goal placement so that it never touches the obstacle region

10/12/22 AA 274 | Lecture 5 10



Popular approaches

Potential fields [Rimon, Koditschek, '92]: create forces on the robot that pull it
toward the goal and push it away from obstacles

Grid-based planning [Stentz, '94]: discretizes problem into grid and runs a
graph-search algorithm (Dijkstra, A*, ...)

Combinatorial planning [LaValle, '06]: constructs structures in the configuration
(C-) space that completely capture all information needed for planning

Sampling-based planning [Kavraki et al, '96; LaValle, Kuffner, '06, etc.]: uses
collision detection algorithms to probe and incrementally search the C-space
for a solution, rather than completely characterizing all of the Cg.ce Structure

10/12/22 AA 274 | Lecture 5 11



Grid-based approaches

Discretize the continuous world into a grid
Each grid cell is either free or forbidden
Robot moves between adjacent free cells

Goal: find sequence of free cells from start to goal N
Mathematically, this corresponds to pathfinding
in a discrete graph G = (V,E) /
Each vertex v € V represents a free cell ,/
Edges (v,u) € E connect adjacent grid cells

10/12/22 AA 274 | Lecture 5 12



Graph search algorithms :

Having determined decomposition, how to find “best” path?
Label-Correcting Algorithms: C(q): cost-of-arrival from q; to g

*

Yes= C(q") :==C(q) + C(q,q")

/ ?l__ 9 * https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
qd (¢

Q)
° O C(q) +C(q,q') < min(C(q"), UPPER)?
@ t‘
O ° Node q’y}
m—)
N

® @ Nodes q' € Succ(q)
-

FRONTIER/ALIVE/PRIORITY QUEUE

10/12/22 AA 274 | Lecture 5 13




Label correcting algorithm

Step 1. Remove a node g from frontier queue and for each child g’ of g, execute
step 2

Step 2.1fC(q) + C(q,q") < min(C(q"), UPPER),set C(q") := C(q) + C(q,q")
and set g to be the parent of ¢'. In addition, if ¢'# g, place q' in the frontier
queue if it is not already there, while if ¢'= g, set UPPER to the new value

Step 3. If the frontier queue is empty, terminate, else go to step 1

Initialization: set the labels of all nodes to o, except for the label of the origin
node, whichis setto 0

10/12/22 AA 274 | Lecture 5 14



GetNext() ? .
R® @\Q OR
Depth-First-Search (DFS): Maintain Q as a stack - Last in/first out 71 ®§D\ g\ §
* Lower memory requirement (only need to store part of graph) g@% /Q% QRRQRC
Ow O OO
Breadth-First-Search (BFS, Bellman-Ford): Maintain Q as a list - First /Q/G\
in/first first out R g?\ G{G)\R
» Update cost for all edges up to current depth before proceeding to ORY RO R
greater depth g A %/Ci O@ROC%%
« Can deal with negative edge (transition) costs g g @9 @R@

Best-First (BF, Dijkstra): Greedily select next q: ¢ = argmingeoC(q)
* Node will enter the frontier queue at most once
* Requires costs to be non-negative

10/12/22 AA 274 | Lecture 5 15



Correctness and improvements

Theorem

If a feasible path exists from g; to q., then algorithm terminates in finite time with
C(qc) equal to the optimal cost of traversal, C*(qg;).

Wasted effort?

10/12/22 AA 274 | Lecture 5 16



Dijkstra

A*: Improving Dijkstra

* Dijkstra orders by optimal “cost-to-arrival”

 Fasterresults if order by “cost-to-arrival”+ (approximate)
“cost-to-go”

* Thatis, strengthen test
C(q) + C(q,q") < UPPER

to
C(q) +C(q,q") + h(q") < UPPER

where h(q) is a heuristic for optimal cost-to-go (specifically, a
positive underestimate)

* In this way, fewer nodes will be placed in the frontier queue

» This modification still guarantees that the algorithm will
terminate with a shortest path

10/12/22 AA 274 | Lecture 5 17



Grid-based approaches: summary

* Pros:
* Simple and easy to use
* Fast (for some problems)

e Cons:

* Resolution dependent

* Not guaranteed to find solution if grid resolution is not small enough
 Limited to simple robots

* Grid size is exponential in the number of DOFs

10/12/22 AA 274 | Lecture 5 18



Back to continuous motion planning

* Arobotis a geometric entity operating
In continuous space

* Combinatorial technigues for motion
planning capture the structure of this B
continuous space

 Particularly, the regions in which the A \ :
robot is not in collision with obstacles 7
* Such approaches are typically T
complete -

* j.e., guaranteed to find a solution;
* and sometimes even an optimal one

10/12/22 AA 274 | Lecture 5 19



Simplest setup revisited

. Assume 2D workspace: W C R?

O C W is the obstacle region with polygonal boundary
Robot is a rigid polygon

Problem: Given initial placement of robot, compute how to gradually move it into
a desired goal placement so that it never touches the obstacle region

10/12/22

AA 274 | Lecture 5

20



Simplest setup

Key point: motion planning problem described in the real-world, but it really
lives in another space -- the configuration (C-) space!

10/12/22 AA 274 | Lecture 5 21



Configuration space

C- space: captures all degrees of freedom (all rigid body transformations)

More in detail, let R C R? be a polygonal robot (e.g., a triangle)

The robot can rotate by angle 8 or translate (z¢, y:) C R?

Every combination g = (x¢, y;, ) yields a unique robot placement: configuration
So, C- space is a subset of R3

Note: 8 + 2 yields equivalent rotations = C- spaceis:R? x S!

Concept of C- space extends naturally to higher dimensions (e.g., robot linkages)

d=2 d=4 d=6

10/12/22 AA 274 | Lecture 5 22



Configuration free space

. The subset F < C of all collision free configurations is the free
space

N\~ free space

obstacle

e
l{r l{r (LI.', ‘(/) ‘\\

X X

fotbidden'spa

10/12/22 AA 274 | Lecture 5 23



10/13/22 AA 274 | Lecture 5 24



10/13/22 AA 274 | Lecture 5 24



10/13/22



10/13/22 AA 274 | Lecture 5 24



10/13/22 AA 274 | Lecture 5 24



10/13/22 AA 274 | Lecture 5 24



Xgoal

Xobs

10/13/22 AA 274 | Lecture 5 24



>
¢

£z 01

10/13/22 AA 274 | Lecture 5 24









Planning in C-space

Let R(qg) € W denote the set of points in the world occupied by the
robot when in configuration g

Robot in collision© R(g) N0 # @
- Accordingly, free space is defined as: Crree = 1q € C|R(q) N O = @}

Path planning problem in C-space: compute a continuous path:
7:[0,1] = Cfree, With 7(0) = g; and 7(1) = g

10/12/22 AA 274 | Lecture 5 25



Combinatorial planning

Key idea: compute a roadmap, which is a graph in which each vertex
is a configuration in Cg... and each edge is a path through C¢.e that
connects a pair of vertices

10/12/22 AA 274 | Lecture 5 26



Free-space roadmaps

Given a complete representation of the free space, we compute a roadmap that
captures its connectivity

A roadmap should preserve:
1. Accessibility: it is always possible to connect some g to the roadmap
(e.8., qr = 51,96 = S2)
2. Connectivity: if there exists a path from g; to q., there exists a path on the
roadmap from s; to s,

Main point: a roadmap provides a discrete representation of the continuous

motion planning problem without losing any of the original connectivity
information needed to solve it

10/12/22 AA 274 | Lecture 5 27



Cell decomposition

Typical approach: cell decomposition. General requirements:
* Decomposition should be easy to compute

* Each cell should be easy to traverse (ideally convex)

» Adjacencies between cells should be straightforward to determine

10/12/22 AA 274 | Lecture 5 28



Computing a trapezoidal cell decomposition

For every vertex (corner) of the forbidden space:

- Extend a vertical ray until it hits the first edge from top and bottom
- Compute intersection points with all edges, and take the closest ones
- More efficient approaches exists

—-—
NP

10/12/22 AA 274 | Lecture 5 29




Other roadmaps

Maximum clearance (medial axis) Minimum distance
(visibility graph)
One closest |
point
__________________ Twoclosest | _ __ ___ __ _
points
One closest
point \
\i

Note: No loss in optimality for a proper choice of discretization

10/12/22 AA 274 | Lecture 5 30



Caveat: free-space computation

* The free space is not known in advance

* We need to compute this space given the
ingredients

* Robot representation, i.e., its shape (polygon,
polyhedron, ...)

* Representation of obstacles

* To achieve this, we do the following:

* Contract the robot into a point

* In return, inflate (or stretch) obstacles by the shape
of the robots

N free space

10/12/22 AA 274 | Lecture 5 31



Higher dimensions

Extensions to higher dimensions is challenging = algebraic decomposition
methods

10/12/22 AA 274 | Lecture 5 32



Additional resources on combinatorial planning

- Visualization of C-space for polygonal robot:
https://www.youtube.com/watch?v=SBFwgR4K1Gk

- Algorithmic details for Minkowski sums and trapezoidal

decomposition: de Berg et al., “Computational geometry:
algorithms and applications”, 2008

Implementation in C++:
Computational Geometry Algorithms Library

CGAL

10/12/22 AA 274 | Lecture 5

Computational

Geometry



https://www.youtube.com/watch?v=SBFwgR4K1Gk

Combinatorial planning: summary

* These approaches are complete and even optimal in some cases
* Do not discretize or approximate the problem

* Have theoretical guarantees on the running time
* |.e., computational complexity is known

* Usually limited to small number of DOFs
 Computationally intractable for many problems

* Problem specific: each algorithm applies to a specific type of
robot/problem

* Difficult to implement; requires special software to reason about
geometric data structures (CGAL)

10/12/22 AA 274 | Lecture 5 34



Next time: sampling-based planning

10/12/22 AA 274 | Lecture 5 35



