
Principles of Robot Autonomy I
Motion planning I: graph search methods

IPRL

Logistics

• Masks
• Homework 1 due today (11:59PM)
• Homework 2 will be released today
• Students are being moved off the waitlist

• If you got a permission code, please use it right now if you haven’t yet
• Any issues: Let Brian know!
• Decided to drop? Let Brian know!
• We cannot answer e-mails of students with their spots on the unified

waitlist
• Check out the lecture notes!

AA 274A | Lecture 3 210/12/22

The see-think-act cycle
Localiza(on
Map	Building

Decision	making
Mo(on	planning

Informa(on
extrac(on

Sensing

raw	data

environmental	model
local	map

posi(on
global	map

Trajectory	
execu(on

Actua(on

actuator	
commands

trajectory

Real	world
environment

Knowledge Mission	goals

See-think-act

AA 274 | Lecture 5 310/12/22

Motion planning

10/12/22 AA 274 | Lecture 5 4

• Aim
• Introduction to motion planning
• Learn about search-based methods for motion planning

• Readings:
• D. Bertsekas. Dynamic Programming and Optimal Control, Vol I. Section 2.3.
• S. LaValle. Planning Algorithms. Sections 6.1-6.3, 6.5.

Compute sequence of actions that drives a robot
from an initial condition to a terminal condition
while avoiding obstacles, respecting motion
constraints, and possibly optimizing a cost function

The see-think-act cycle
Localiza(on
Map	Building

Decision	making
Mo(on	planning

Informa(on
extrac(on

Sensing

raw	data

environmental	model
local	map

posi(on
global	map

Trajectory	
execu(on

Actua(on

actuator	
commands

trajectory

Real	world
environment

Knowledge Mission	goals

See-think-act

AA 274 | Lecture 5 510/12/22

10/12/22 AA 274 | Lecture 5 6

10/12/22 AA 274 | Lecture 5 7

Examples from:
https://ompl.kavrakilab.org/gallery.html

https://ompl.kavrakilab.org/gallery.html

More examples of motion planning

10/12/22 AA 274 | Lecture 5 8

• Steering autonomous vehicles
• Controlling humanoid robot
• Surgery planning
• Protein folding
• …

Some history

10/12/22 AA 274 | Lecture 5 9

• Formally defined in the 1970s
• Development of exact, combinatorial solutions in the 1980s
• Development of sampling-based methods in the 1990s
• Deployment on real-time systems in the 2000s
• Current research: inclusion of differential and logical constraints,

planning under uncertainty, parallel implementation, feedback
plans and more

Simplest setup

10/12/22

• Assume 2D workspace:
• is the obstacle region with polygonal boundary
• Robot is a rigid polygon
• Problem: given initial placement of robot, compute how to gradually move it into a

desired goal placement so that it never touches the obstacle region

AA 274 | Lecture 5 10

Popular approaches

10/12/22 AA 274 | Lecture 5 11

• Potential fields [Rimon, Koditschek, '92]: create forces on the robot that pull it
toward the goal and push it away from obstacles

• Grid-based planning [Stentz, '94]: discretizes problem into grid and runs a
graph-search algorithm (Dijkstra, A*, …)

• Combinatorial planning [LaValle, '06]: constructs structures in the configuration
(C-) space that completely capture all information needed for planning

• Sampling-based planning [Kavraki et al, '96; LaValle, Kuffner, '06, etc.]: uses
collision detection algorithms to probe and incrementally search the C-space
for a solution, rather than completely characterizing all of the 𝐶!"## structure

Grid-based approaches

• Discretize the continuous world into a grid
• Each grid cell is either free or forbidden
• Robot moves between adjacent free cells
• Goal: find sequence of free cells from start to goal

• Mathematically, this corresponds to pathfinding
in a discrete graph 𝐺 = 𝑉, 𝐸
• Each vertex 𝑣 ∈ 𝑉 represents a free cell
• Edges 𝑣, 𝑢 ∈ 𝐸 connect adjacent grid cells

10/12/22 AA 274 | Lecture 5 12

Graph search algorithms

10/12/22 AA 274 | Lecture 5 13

• Having determined decomposition, how to find “best” path?
• Label-Correcting Algorithms: 𝐶(𝑞): cost-of-arrival from 𝑞$ to 𝑞

FRONTIER/ALIVE/PRIORITY QUEUE

Node 𝑞
Nodes 𝑞% ∈ 𝑆𝑢𝑐𝑐(𝑞)

𝐶 𝑞 + 𝐶 𝑞, 𝑞% ≤ min 𝐶 𝑞% , UPPER ?

Yes ⇒ 𝐶 𝑞% ≔ 𝐶 𝑞 + 𝐶 𝑞, 𝑞%

𝑞% ≠ 𝑞&?
* https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

Label correcting algorithm

10/12/22 AA 274 | Lecture 5 14

Step 1. Remove a node 𝑞 from frontier queue and for each child 𝑞% of 𝑞, execute
step 2

Step 2. If 𝐶 𝑞 + 𝐶 𝑞, 𝑞% ≤ min 𝐶 𝑞% , UPPER , set 𝐶 𝑞% ≔ 𝐶 𝑞 + 𝐶 𝑞, 𝑞%
and set 𝑞 to be the parent of 𝑞%. In addition, if 𝑞%≠ 𝑞&, place 𝑞% in the frontier
queue if it is not already there, while if 𝑞%= 𝑞&, set UPPER to the new value
𝐶 𝑞 + 𝐶 𝑞, 𝑞&

Step 3. If the frontier queue is empty, terminate, else go to step 1

Initialization: set the labels of all nodes to ∞, except for the label of the origin
node, which is set to 0

GetNext() ?

10/12/22 AA 274 | Lecture 5 15

Depth-First-Search (DFS): Maintain 𝑄 as a stack – Last in/first out
• Lower memory requirement (only need to store part of graph)

Breadth-First-Search (BFS, Bellman-Ford): Maintain 𝑄 as a list – First
in/first first out
• Update cost for all edges up to current depth before proceeding to

greater depth
• Can deal with negative edge (transition) costs

Best-First (BF, Dijkstra): Greedily select next q: 𝑞 = argmin'∈)𝐶(𝑞)
• Node will enter the frontier queue at most once
• Requires costs to be non-negative

Correctness and improvements

10/12/22 AA 274 | Lecture 5 16

If a feasible path exists from 𝑞$ to 𝑞&, then algorithm terminates in finite time with
𝐶 𝑞& equal to the optimal cost of traversal, 𝐶∗ 𝑞& .

Theorem

A*: Improving Dijkstra

10/12/22 AA 274 | Lecture 5 17

• Dijkstra orders by optimal “cost-to-arrival”
• Faster results if order by “cost-to-arrival”+ (approximate)

“cost-to-go”
• That is, strengthen test

𝐶 𝑞 + 𝐶 𝑞, 𝑞% ≤ UPPER
to

𝐶 𝑞 + 𝐶 𝑞, 𝑞% + ℎ(𝑞%) ≤ UPPER
where ℎ 𝑞 is a heuristic for optimal cost-to-go (specifically, a
positive underestimate)
• In this way, fewer nodes will be placed in the frontier queue
• This modification still guarantees that the algorithm will

terminate with a shortest path

Dijkstra

A*

Grid-based approaches: summary

• Pros:
• Simple and easy to use
• Fast (for some problems)

• Cons:
• Resolution dependent

• Not guaranteed to find solution if grid resolution is not small enough
• Limited to simple robots

• Grid size is exponential in the number of DOFs

10/12/22 AA 274 | Lecture 5 18

Back to continuous motion planning

• A robot is a geometric entity operating
in continuous space
• Combinatorial techniques for motion

planning capture the structure of this
continuous space

• Particularly, the regions in which the
robot is not in collision with obstacles

• Such approaches are typically
complete

• i.e., guaranteed to find a solution;
• and sometimes even an optimal one

10/12/22 AA 274 | Lecture 5 19

Simplest setup revisited

10/12/22

• Assume 2D workspace:
• is the obstacle region with polygonal boundary
• Robot is a rigid polygon
• Problem: Given initial placement of robot, compute how to gradually move it into

a desired goal placement so that it never touches the obstacle region

AA 274 | Lecture 5 20

Simplest setup

Key point: motion planning problem described in the real-world, but it really
lives in another space -- the configuration (C-) space!

10/12/22 AA 274 | Lecture 5 21

Configuration space
• C- space: captures all degrees of freedom (all rigid body transformations)
• More in detail, let be a polygonal robot (e.g., a triangle)
• The robot can rotate by angle 𝜃 or translate
• Every combination 𝑞 = 𝑥+, 𝑦+, 𝜃 yields a unique robot placement: configuration
• So, C- space is a subset of
• Note: 𝜃 ± 2𝜋 yields equivalent rotations ⇒ C- space is:
• Concept of C- space extends naturally to higher dimensions (e.g., robot linkages)

10/12/22 AA 274 | Lecture 5 22

Configuration free space

• The subset ℱ ⊆ 𝒞 of all collision free configurations is the free
space

10/12/22 AA 274 | Lecture 5 23

obstacle

forbidden space

free space

AA 274 | Lecture 510/13/22 24

AA 274 | Lecture 510/13/22 24

AA 274 | Lecture 510/13/22 24

AA 274 | Lecture 510/13/22 24

AA 274 | Lecture 510/13/22 24

AA 274 | Lecture 510/13/22 24

AA 274 | Lecture 510/13/22 24

AA 274 | Lecture 510/13/22 24

AA 274 | Lecture 510/13/22 24

10/12/22 AA 274 | Lecture 5 24

Planning in C-space
• Let 𝑅 𝑞 ⊂ 𝑊 denote the set of points in the world occupied by the

robot when in configuration 𝑞
• Robot in collision ⇔ 𝑅 𝑞 ∩ 𝑂 ≠ ∅
• Accordingly, free space is defined as: 𝐶!"## = 𝑞 ∈ 𝐶 𝑅 𝑞 ∩ 𝑂 = ∅
• Path planning problem in C-space: compute a continuous path:
𝜏: 0,1 → 𝐶!"##, with 𝜏 0 = 𝑞$ and 𝜏 1 = 𝑞%

10/12/22 AA 274 | Lecture 5 25

Combinatorial planning

10/12/22 AA 274 | Lecture 5 26

Key idea: compute a roadmap, which is a graph in which each vertex
is a configuration in 𝐶!"## and each edge is a path through 𝐶!"## that
connects a pair of vertices

Free-space roadmaps

10/12/22 AA 274 | Lecture 5 27

Given a complete representation of the free space, we compute a roadmap that
captures its connectivity

A roadmap should preserve:
1. Accessibility: it is always possible to connect some 𝑞 to the roadmap

(e.g., 𝑞$ → 𝑠,, 𝑞& → 𝑠-)
2. Connectivity: if there exists a path from 𝑞$ to 𝑞&, there exists a path on the

roadmap from 𝑠, to 𝑠-

Main point: a roadmap provides a discrete representation of the continuous
motion planning problem without losing any of the original connectivity
information needed to solve it

Cell decomposition

10/12/22 AA 274 | Lecture 5 28

Typical approach: cell decomposition. General requirements:
• Decomposition should be easy to compute
• Each cell should be easy to traverse (ideally convex)
• Adjacencies between cells should be straightforward to determine

Computing a trapezoidal cell decomposition

10/12/22 AA 274 | Lecture 5 29

For every vertex (corner) of the forbidden space:
• Extend a vertical ray until it hits the first edge from top and bottom

• Compute intersection points with all edges, and take the closest ones
• More efficient approaches exists

Other roadmaps

10/12/22 AA 274 | Lecture 5 30

Maximum clearance (medial axis) Minimum distance
(visibility graph)

Note: No loss in optimality for a proper choice of discretization

Caveat: free-space computation
• The free space is not known in advance
• We need to compute this space given the

ingredients
• Robot representation, i.e., its shape (polygon,

polyhedron, …)
• Representation of obstacles

• To achieve this, we do the following:
• Contract the robot into a point
• In return, inflate (or stretch) obstacles by the shape

of the robots

10/12/22 AA 274 | Lecture 5 31

forbidden space

free space

Higher dimensions

10/12/22 AA 274 | Lecture 5 32

• Extensions to higher dimensions is challenging ⇒ algebraic decomposition
methods

Additional resources on combinatorial planning

• Visualization of C-space for polygonal robot:
https://www.youtube.com/watch?v=SBFwgR4K1Gk

• Algorithmic details for Minkowski sums and trapezoidal
decomposition: de Berg et al., “Computational geometry:
algorithms and applications”, 2008

• Implementation in C++:
Computational Geometry Algorithms Library

3310/12/22 AA 274 | Lecture 5

https://www.youtube.com/watch?v=SBFwgR4K1Gk

Combinatorial planning: summary

• These approaches are complete and even optimal in some cases
• Do not discretize or approximate the problem

• Have theoretical guarantees on the running time
• I.e., computational complexity is known

• Usually limited to small number of DOFs
• Computationally intractable for many problems

• Problem specific: each algorithm applies to a specific type of
robot/problem
• Difficult to implement; requires special software to reason about

geometric data structures (CGAL)

10/12/22 AA 274 | Lecture 5 34

Next time: sampling-based planning

10/12/22 AA 274 | Lecture 5 35

