
Principles of Robot Autonomy I
Motion planning I: graph search methods 

IPRL



Logistics

• Masks
• Homework 1 due today (11:59PM)
• Homework 2 will be released today 
• Students are being moved off the waitlist

• If you got a permission code, please use it right now if you haven’t yet
• Any issues: Let Brian know!
• Decided to drop? Let Brian know!
• We cannot answer e-mails of students with their spots on the unified 

waitlist
• Check out the lecture notes!
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Motion planning
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• Aim
• Introduction to motion planning
• Learn about search-based methods for motion planning

• Readings:
• D. Bertsekas. Dynamic Programming and Optimal Control, Vol I. Section 2.3.
• S. LaValle. Planning Algorithms. Sections 6.1-6.3, 6.5.

Compute sequence of actions that drives a robot 
from an initial condition to a terminal condition 
while avoiding obstacles, respecting motion 
constraints, and possibly optimizing a cost function
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Examples from:
https://ompl.kavrakilab.org/gallery.html

https://ompl.kavrakilab.org/gallery.html


More examples of motion planning
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• Steering autonomous vehicles
• Controlling humanoid robot
• Surgery planning
• Protein folding
• …



Some history
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• Formally defined in the 1970s
• Development of exact, combinatorial solutions in the 1980s
• Development of sampling-based methods in the 1990s 
• Deployment on real-time systems in the 2000s
• Current research: inclusion of differential and logical constraints, 

planning under uncertainty, parallel implementation, feedback 
plans and more 



Simplest setup

10/12/22

• Assume 2D workspace: 
• is the obstacle region with polygonal boundary
• Robot is a rigid polygon
• Problem: given initial placement of robot, compute how to gradually move it into a 

desired goal placement so that it never touches the obstacle region 
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Popular approaches
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• Potential fields [Rimon, Koditschek, '92]: create forces on the robot that pull it 
toward the goal and push it away from obstacles

• Grid-based planning [Stentz, '94]: discretizes problem into grid and runs a 
graph-search algorithm (Dijkstra, A*, …)

• Combinatorial planning [LaValle, '06]: constructs structures in the configuration
(C-) space that completely capture all information needed for planning

• Sampling-based planning [Kavraki et al, '96; LaValle, Kuffner, '06, etc.]: uses 
collision detection algorithms to probe and incrementally search the C-space 
for a solution, rather than completely characterizing all of the 𝐶!"## structure



Grid-based approaches

• Discretize the continuous world into a grid
• Each grid cell is either free or forbidden
• Robot moves between adjacent free cells
• Goal: find sequence of free cells from start to goal

• Mathematically, this corresponds to pathfinding 
in a discrete graph 𝐺 = 𝑉, 𝐸
• Each vertex 𝑣 ∈ 𝑉 represents a free cell
• Edges 𝑣, 𝑢 ∈ 𝐸 connect adjacent grid cells
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Graph search algorithms
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• Having determined decomposition, how to find “best” path?
• Label-Correcting Algorithms: 𝐶(𝑞): cost-of-arrival from 𝑞$ to 𝑞

FRONTIER/ALIVE/PRIORITY QUEUE

Node 𝑞
Nodes 𝑞% ∈ 𝑆𝑢𝑐𝑐(𝑞)

𝐶 𝑞 + 𝐶 𝑞, 𝑞% ≤ min 𝐶 𝑞% , UPPER ?

Yes ⇒ 𝐶 𝑞% ≔ 𝐶 𝑞 + 𝐶 𝑞, 𝑞%

𝑞% ≠ 𝑞&?
* https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm



Label correcting algorithm
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Step 1. Remove a node 𝑞 from frontier queue and for each child 𝑞% of 𝑞, execute 
step 2

Step 2. If 𝐶 𝑞 + 𝐶 𝑞, 𝑞% ≤ min 𝐶 𝑞% , UPPER , set 𝐶 𝑞% ≔ 𝐶 𝑞 + 𝐶 𝑞, 𝑞%
and set 𝑞 to be the parent of 𝑞%. In addition, if 𝑞%≠ 𝑞&, place 𝑞% in the frontier 
queue if it is not already there, while if 𝑞%= 𝑞&, set UPPER to the new value 
𝐶 𝑞 + 𝐶 𝑞, 𝑞&

Step 3. If the frontier queue is empty, terminate, else go to step 1

Initialization: set the labels of all nodes to ∞, except for the label of the origin 
node, which is set to 0



GetNext() ?
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Depth-First-Search (DFS): Maintain 𝑄 as a stack – Last in/first out
• Lower memory requirement (only need to store part of graph)

Breadth-First-Search (BFS, Bellman-Ford): Maintain 𝑄 as a list – First 
in/first first out
• Update cost for all edges up to current depth before proceeding to 

greater depth
• Can deal with negative edge (transition) costs

Best-First (BF, Dijkstra): Greedily select next q: 𝑞 = argmin'∈)𝐶(𝑞)
• Node will enter the frontier queue at most once
• Requires costs to be non-negative



Correctness and improvements
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If a feasible path exists from 𝑞$ to 𝑞&, then algorithm terminates in finite time with 
𝐶 𝑞& equal to the optimal cost of traversal, 𝐶∗ 𝑞& .

Theorem



A*: Improving Dijkstra
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• Dijkstra orders by optimal “cost-to-arrival”
• Faster results if order by “cost-to-arrival”+ (approximate) 

“cost-to-go”
• That is, strengthen test

𝐶 𝑞 + 𝐶 𝑞, 𝑞% ≤ UPPER
to

𝐶 𝑞 + 𝐶 𝑞, 𝑞% + ℎ(𝑞%) ≤ UPPER
where ℎ 𝑞 is a heuristic for optimal cost-to-go (specifically, a 
positive underestimate)
• In this way, fewer nodes will be placed in the frontier queue
• This modification still guarantees that the algorithm will 

terminate with a shortest path

Dijkstra

A*



Grid-based approaches: summary 

• Pros: 
• Simple and easy to use
• Fast (for some problems)

• Cons:
• Resolution dependent

• Not guaranteed to find solution if grid resolution is not small enough
• Limited to simple robots 

• Grid size is exponential in the number of DOFs
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Back to continuous motion planning

• A robot is a geometric entity operating 
in continuous space
• Combinatorial techniques for motion 

planning capture the structure of this 
continuous space

• Particularly, the regions in which the 
robot is not in collision with obstacles

• Such approaches are typically 
complete

• i.e., guaranteed to find a solution;
• and sometimes even an optimal one

10/12/22 AA 274 | Lecture 5 19



Simplest setup revisited

10/12/22

• Assume 2D workspace: 
• is the obstacle region with polygonal boundary
• Robot is a rigid polygon
• Problem: Given initial placement of robot, compute how to gradually move it into 

a desired goal placement so that it never touches the obstacle region 
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Simplest setup

Key point: motion planning problem described in the real-world, but it really 
lives in another space -- the configuration (C-) space!
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Configuration space
• C- space: captures all degrees of freedom (all rigid body transformations)
• More in detail, let                    be a polygonal robot (e.g., a triangle)
• The robot can rotate by angle 𝜃 or translate 
• Every combination 𝑞 = 𝑥+, 𝑦+, 𝜃 yields a unique robot placement: configuration
• So, C- space is a subset of 
• Note: 𝜃 ± 2𝜋 yields equivalent rotations ⇒ C- space is: 
• Concept of C- space extends naturally to higher dimensions (e.g., robot linkages)
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Configuration free space

• The subset ℱ ⊆ 𝒞 of all collision free configurations is the free 
space
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obstacle

forbidden space

free space
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Planning in C-space
• Let 𝑅 𝑞 ⊂ 𝑊 denote the set of points in the world occupied by the 

robot when in configuration 𝑞
• Robot in collision ⇔ 𝑅 𝑞 ∩ 𝑂 ≠ ∅
• Accordingly, free space is defined as: 𝐶!"## = 𝑞 ∈ 𝐶 𝑅 𝑞 ∩ 𝑂 = ∅
• Path planning problem in C-space: compute a continuous path: 
𝜏: 0,1 → 𝐶!"##, with 𝜏 0 = 𝑞$ and 𝜏 1 = 𝑞%
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Combinatorial planning
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Key idea: compute a roadmap, which is a graph in which each vertex 
is a configuration in 𝐶!"## and each edge is a path through 𝐶!"## that 
connects a pair of vertices    



Free-space roadmaps
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Given a complete representation of the free space, we compute a roadmap that 
captures its connectivity

A roadmap should preserve:
1. Accessibility: it is always possible to connect some 𝑞 to the roadmap 

(e.g., 𝑞$ → 𝑠,, 𝑞& → 𝑠-)
2. Connectivity: if there exists a path from 𝑞$ to 𝑞&, there exists a path on the 

roadmap from 𝑠, to 𝑠-

Main point: a roadmap provides a discrete representation of the continuous 
motion planning problem without losing any of the original connectivity 
information needed to solve it 



Cell decomposition
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Typical approach: cell decomposition. General requirements:
• Decomposition should be easy to compute
• Each cell should be easy to traverse (ideally convex)
• Adjacencies between cells should be straightforward to determine



Computing a trapezoidal cell decomposition
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For every vertex (corner) of the forbidden space:
• Extend a vertical ray until it hits the first edge from top and bottom

• Compute intersection points with all edges, and take the closest ones
• More efficient approaches exists



Other roadmaps 
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Maximum clearance (medial axis) Minimum distance 
(visibility graph)

Note: No loss in optimality for a proper choice of discretization



Caveat: free-space computation
• The free space is not known in advance
• We need to compute this space given the 

ingredients
• Robot representation, i.e., its shape (polygon, 

polyhedron, …)
• Representation of obstacles

• To achieve this, we do the following:
• Contract the robot into a point
• In return, inflate  (or stretch) obstacles by the shape 

of the robots
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forbidden space

free space



Higher dimensions
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• Extensions to higher dimensions is challenging ⇒ algebraic decomposition 
methods



Additional resources on combinatorial planning

• Visualization of C-space for polygonal robot: 
https://www.youtube.com/watch?v=SBFwgR4K1Gk

• Algorithmic details for Minkowski sums and trapezoidal 
decomposition: de Berg et al., “Computational geometry: 
algorithms and applications”, 2008

• Implementation in C++: 
Computational Geometry Algorithms Library
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https://www.youtube.com/watch?v=SBFwgR4K1Gk


Combinatorial planning: summary 

• These approaches are complete and even optimal in some cases
• Do not discretize or approximate the problem

• Have theoretical guarantees on the running time
• I.e., computational complexity is known

• Usually limited to small number of DOFs 
• Computationally intractable for many problems

• Problem specific: each algorithm applies to a specific type of 
robot/problem
• Difficult to implement; requires special software to reason about 

geometric data structures (CGAL)

10/12/22 AA 274 | Lecture 5 34



Next time: sampling-based planning
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