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Today’s lecture
• Aim

• Introduce the topic of multi-sensor perception and sensor fusion
• Learn about Kalman filtering applied to sensor fusion
• Devise a sensor fusion algorithm for position estimation (low-level fusion)

• Readings
• F. Gustafsson. Statistical Sensor Fusion. 2010.
• D. Simon. Optimal State Estimation: Kalman, 𝐻!, and Nonlinear 

Approaches. 2006.
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Multi-sensor approach
• Localization
• Environment
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Multi-sensor perception
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Modeling the environment
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• Two types of algorithms are typically used (multiple sensors)
• Object tracking algorithms
• Occupancy grid algorithms
• Goal of object tracking algorithms
• to determine the list of objects, which are currently present in the

environment
• to estimate their state variables

• Occupany grid approach
• we describe the environment in a form of a discrete grid with certain

height and width of the cells (fixed resolution step size)
• each cell has a probability that it is occupied (or not), defined by sensor

observations
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Tracking vs. occupancy grids
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Multi-sensor perception
• Uncertainty reduction
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Uncertainty - Camera 

Uncertainty after Fusion 

Uncertainty - Radar 
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Multi-sensor perception / tracking
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Sensor fusion of camera and long-range radar
[Source: Baselabs, 2017]
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Using stationary sensors
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Single-sensor vs multi-sensor perception
• Drawbacks of single-sensor perception

• Limited range and field of view
• Performance is susceptible to common environmental conditions
• Range determination is not as accurate as required
• Detection of artefacts, so-called false positives

• Multi-sensor perception might compensate these, and provide:
• Increased classification accuracy of objects
• Improved state estimation accuracy
• Improved robustness for instance in adverse weather conditions
• Increased availability
• Enlarged field of view
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Sensor fusion taxonomies
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Fusion level taxonomy
• Fusion is typically divided into three 

levels of abstraction:
• Low-level fusion
• Intermediate-level fusion
• High-level fusion

• They respectively fuse:
• Signals
• Features and characteristics
• Decisions
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Fusion class taxonomy
• Competitive fusion 

• is used when redundant sensors measure 
the same quantity, in order to reduce the 
overall uncertainty

• Complementary fusion 
• is used when sensors provide a 

complementary information about the 
environment, for instance distance 
sensors with different ranges

• Cooperative fusion 
• is used when the required information 

can not be inferred from a single sensor 
(e.g. GPS localization and stereo vision)
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Architectural taxonomy
• The centralized architecture is theoretically optimal, but scales badly with respect to 

communication and processing
• The decentralized architecture is a collection of autonomous centralized systems, 

and has the same scaling issues
• The distributed architecture scales better, but can lead to information loss because 

each sensor processes its information locally
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Data-related taxonomy
• The most interesting data-related fusion aspect is the inherent 

imperfection of the sensory data
• The data-related taxonomy provides us with a checklist of 

underlying data issues and how to deal with them
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Data-related taxonomy
• Sensory data makes a statement about the environment
• "The distance to the nearest car is 35.12 m”

• Due to the inherent data imprecision, we have to deal with:
• Uncertainty: The distance to the nearest car is more than 20 m with

80% probability
• Vagueness: The distance to the nearest car is more than 20 m with 

80% probability, and we are 90% confident in this statement
• Ambiguity
• Incompleteness

• The underlying data can contain multiple imperfections at once
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Bayesian statistics in multi-sensor data fusion 
• Basic premise: all unknowns are treated as random variables and the 

knowledge of these quantities is summarized via a probability 
distribution
• This includes the observed data, any missing data, noise, unknown parameters, 

and models

• Bayesian statistics provides 
• a framework for quantifying objective and subjective uncertainties
• principled methods for model estimation and comparison and the classification 

of new observations
• a natural way to combine different sensor observations
• principle methods for dealing with missing information
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Sensor fusion – a simple example

• Problem: determine the distance to n objects using measurements 
from two sensors 
• Assumptions:

• Both sensors have the same field of view
• First sensor has a higher precision than the second sensor
• Consider the simplest case (n=1)
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• How to fuse these measurements properly?
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Sensor fusion – a simple example

• Sensors provide redundant measurements of the same physical 
quantity (distance)
• To incorporate the precision information → measurements are 

assumed to be normally distributed random variables
• Specifically, the univariate Gaussian distributions are:
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Sensor fusion – a simple example

• Assumption from before:
• First sensor has a higher precision than the second sensor

• This can be captured as: 𝜎"# < 𝜎##

• Problem is to find
• The idea is to combine the previous Gaussian distributions

11/24/22 Lecture 16 20



Sensor fusion – a simple example

• Re-arranging the expression in the exponent and dividing the 
numerator and denominator by (𝜎!" + 𝜎""):

• To obtain an expression of form 𝑥" − 2𝜇𝑥 + 𝜇" = 𝑥 − 𝜇 " in the 
numerator, it is necessary to add and subtract the square of the second 
term
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Sensor fusion – a simple example

• The expression in the exponent becomes
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Sensor fusion – a simple example

• Putting everything together leads to the final distribution which 
represents the fused information
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Sensor fusion – a simple example

• Mean value and variance are

• The fused value is the weighted average of the measurements
• The weighting favors the sensor with higher precision
• The overall uncertainty decreases
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Kalman filter (KF) – again

• Assumption #1: linear dynamics

• i.i.d .process noise 𝜖$ is                    

• Assumption #1 implies that the probabilistic generative model is 
Gaussian
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Kalman filter (KF)

• Assumption #2: linear measurement model

• i.i.d. measurement noise 𝛿$ is 

• Assumption #2 implies that the measurement probability is 
Gaussian
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Kalman filter (KF)

• Assumption #3: the initial belief is Gaussian

• Key fact: These three assumptions ensure that the posterior 𝑏𝑒𝑙(𝑥#)
is Gaussian for all t, i.e., 
• Note:

• KF implements a belief computation for continuous states
• Gaussians are unimodal à commitment to single-hypothesis filtering 

11/24/22 Lecture 16 27



Kalman filter (KF) – pose estimation

• The KF is optimal for linear Gaussian systems (minimum variance)
• But: reality is typically nonlinear
• KF is computationally very efficient
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Kalman filter: algorithm revisited
𝑏𝑒𝑙(𝑥!"#)

𝑏𝑒𝑙(𝑥!)

Prediction:
𝑏𝑒𝑙(𝑥!)

Correction:
𝑏𝑒𝑙(𝑥!)

Project state ahead

Project covariance ahead

Compute Kalman gain

Update estimate with new measurement

Update covariance

Prediction

Correction
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Sensor fusion example

• Problem: Estimate position, velocity, and 
acceleration of a vehicle from noisy position 
and acceleration measurements
• Assumptions:

• Single track model for the vehicle
• Lidar provides position measurements with low 

precision
• GPS provides position measurements with high 

precision
• IMU provides acceleration measurements

• Sensor fusion is done using the Kalman filter
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Sensor fusion algorithm
Kalman filter
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Sensor fusion example: Motion model

• State vector: 
• Change of the state over time is captured by the motion model

• 𝑇$ represents sampling time 
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Sensor fusion example: Motion model

• The motion model can be represented in matrix form

where 𝜖# is independent process noise distributed as
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State vector State transition 
matrix

Process noise
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Sensor fusion example: Measurement model

• The measurement model defines a mapping from the state space to the 
measurement space
• For this example, two possible fusion scenarios will be considered: 

1. Lidar + IMU

2. Lidar + GPS + IMU

• In the first scenario, only measurements from Lidar and IMU are 
available
• Assumption: Lidar provides low precision measurements (noisy data)

• In the second scenario, high precision GPS measurements are also 
available
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Sensor fusion example: Measurement model

• First scenario – measurement model is given by

where 𝛿# is independent measurement noise distributed as
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Sensor fusion example: Initialization

• Choosing the initial state vector 𝜇% - depends on 
available information
• If there is a-priori knowledge – initialization is done with known values
• If there is a lack of information – initial state is chosen to be zero
• For this example the initial state vector is set to zero

• Choosing the initial covariance matrix Σ% - should be 
defined based on the initialization error
• If the initial state is not very close to the correct state - Σ! will have 

large values
• If the initial state is close to the correct state - Σ! will have small values
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Sensor fusion example: Noise model tuning

• The process noise covariance matrix 𝑅! - describes the confidence in the 
system model
• Small values indicate higher confidence – predicted values are more 

weighted
• Large values indicate lower confidence – measurements become dominant

• The measurement noise covariance matrix 𝑄! - describes the confidence 
in the measurements
• Has a similar interpretation as 𝑅$

• Both matrices need to be symmetric and positive definite

11/24/22 Lecture 16 36



Sensor fusion example: Algorithm

• Estimation results are obtained using the prediction-correction 
scheme
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Project state ahead

Project covariance ahead
Update estimate with new measurements

Update covariance

Prediction
Correction
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Sensor fusion example: Position estimation
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Sensor fusion example: Position estimation
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Sensor fusion example: Position estimation
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Estimate is very noisy because of the Lidar 
measurements
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Sensor fusion example: Velocity estimation
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Sensor fusion example: Velocity estimation
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Sensor fusion example: Acceleration estimation
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Sensor fusion example: Acceleration estimation
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Sensor fusion example: Acceleration estimation
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Sensor fusion example: Measurement model

• In the previous scenario – the position estimate is quite noisy 
(because of the low precision of the Lidar measurements)
• Therefore, in the second scenario, position is measured with Lidar 

and GPS
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Sensor fusion example: Noise model tuning

• The measurement noise covariance matrix 𝑄# for this scenario has
an additional GPS variance 
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Sensor fusion example: Position estimation
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Sensor fusion example: Position estimation
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Sensor fusion example: Position estimation
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Combining Lidar and GPS data results in a more 
accurate estimation
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Sensor fusion example: Position variance

11/24/22 Lecture 16 51



Sensor fusion example: Conclusion

• Problem: Vehicle state estimation using Kalman filter
• The example pointed out:

• How to create a motion model and a measurement model
• How to fuse the data from different types of sensors
• How to set the initial state vector and the initial covariance 

matrix
• How to chose appropriate values for process noise and 

measurement noise covariance matrices
• How to achieve a more accurate state estimation by adding 

more sensors
• How fusion of data decreases the overall estimation variance
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Useful trick

• Augment the state vector with some auxiliary states and then apply the 
KF to the augmented state space model

• What can we handle?
• Colored state noise
• Colored measurement noise
• Sensor offset and drifts
• Sensor faults (sudden offset)
• Actuator fault (sudden offset)
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Common problems in multi-sensor data fusion

• Registration: Coordinates (both time and space) of different sensors or 
fusion agents must be aligned.
• Bias: Even if the coordinate axis are aligned, due to the transformations, 

biases can result. These have to be compensated.
• Correlation: Even if the sensors are independently collecting data, processed 

information to be fused can be correlated.
• Data association: multi-target tracking problems introduce a major 

complexity to the fusion system. 
• Out-of-sequence measurements: Due to delayed communications between 

local agents, measurements belonging to a target whose more recent 
measurement has already been processed, might arrive to a fusion center.
• …
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Example: Asynchronous measurements
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Asynchronous 
measurements incorporation

Vehicle motion model: 
explicit dependence on the 

sampling time Δ𝑡

Allows to incorporate sensors 
with different update rates 

correctly.



Example: Out-of-sequence measurements

11/24/22 Lecture 16 56

• Might lead to incorrect temporal order, which in turn causes a negative 
time measurement update (NTMU) in the fusion algorithm (e.g., EKF).
• As a result, the process of sensor fusion is not performed correctly.
• A wrong representation of the environment is created!

[Source: A. Mehmed, Runtime monitoring of automated driving systems, 2019]



Example: Out-of-sequence measurements
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• Timestamping data at arrival (Centralized Method)
• Measurement cycle time Tc=1/fps

• Timestamping at the time of acquisition (Distributed Method)
• Global time is needed

• Triggering method (by external source)



Sensor fusion using the Autoware stack
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Autoware.org, 2021
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Sensor fusion using the Autoware stack
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Autoware.org, 2021
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Eco-system around the driving stack
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Autoware.org, 2022
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Localization using the EKF
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https://gitlab.com/autowarefoundation/autoware.ai/core_perception/tree/master/ekf_localizer
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Live demo / Autoware
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1. Localization with odometry only (IMU)
2. Localization with GNSS without noise 
3. Localization with GNSS with noisy data 
4. Localization with GNSS with noise and bias
5. Localization with Lidar
• parameter tuning 
• Lidar pose has an unknown time delay and unknown noise
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