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Today’s lecture

* Aim
* Learn about the general SLAM problem
* Learn about EKF SLAM
* Introduce particle filter SLAM

* Readings
* S. Thrun, W. Burgard, and D. Fox. Probabilistic robotics. MIT press, 2005.
Sections 8.1 -8.3, 10.1-10.4

* S. Thrun, W. Burgard, and D. Fox. Probabilistic robotics. MIT press, 2005.
Sections 13.1-13.3, 13.5
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Simultaneous Localization and Mapping

The SLAM problem:
given measurements
Z1.¢ and controls uq.¢,
find the path (or pose)
of the robot and
acquire a map of the
environment
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Forms of SLAM

* Online SLAM problem: estimate the posterior over the momentary
pose along with the map

p(xtvmlzlitvulit) or p(xtamact Zl:taulzt)

* Full SLAM problem: estimate posterior over the entire path along
with the map

p(xlztam‘ Zl:taulzt) or p(xlztamact Zl:taulzt)
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Graphical models of SLAM

Online SLAM Full SLAM
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The challenge of SLAM

* Robot path and map are both unknown

* Path error is correlated with map error
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R EEEEEEEEE—————S——m—m—m———
EKF SLAM

* Historically the earliest SLAM algorithm

* Key idea: apply EKF to online SLAM using maximum likelihood data
association

* Assumptions:

1. Gaussian assumption for motion and perception noise, and Gaussian
approximation for belief (essential)

2. Feature-based maps (essential)

* Two versions of the problem

1. Correspondence variables are known
2. Correspondence variables are not known (usual case)
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EKF SLAM with known correspondences

 Similar to EKF localization algorithm with known correspondences

* Key difference: in addition to estimate the robot pose x;, the EKF
SLAM algorithm also estimates the coordinates of all landmarks

e Define combined state vector
[ Tt) 0 T
Yt .= m o (.fl?, Y, U, mlgiU? ml:fw ma,z, mQ:y e mN,a:a mN’y)
3 + 2N vector
* Goal: calculate the online posterior

p(yt \ Z1:ts Ul:t)
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Motion and sensing model

* (Following discussion is for illustration purposes; setup can be
generalized to other motion and sensing models)

* Assume motion model with state x; = (x,y,0)

Yt = g(utayt—l) + €4, €t " N(07 Rt)a Gy = Jg(utalut—l)

where we assume that the landmarks are static, that is

1. g(u¢, ye—q) is a 3+2N vector, whose last 2N components are the same as
those in y;_4

2. Ry has zero entries, except for the top left 3 x 3 block
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Motion and sensing model

* Assume range and bearing measurement model

i 3 2)? o Gy —y)P N (o2 0
T (atanQ(mj,y — Y, Mje — ) — 0 e e AL R 0 035

:h’(yt])

* Usual linear approximation for sensing model (with j = c,f)

ah(ﬁta ])
DYy

h(yt, j) = h(fg, 3) + Hf(yt — 1), where Hf =
* Since h depends only on x; and m;, H! can be factored as

Hr= heE, .
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Motion and sensing model

* First term, a 2 x 5 matrix, is the Jacobian of h(y,,j) at ji; w.r.t. x, and m;:
ﬁt,m_ﬁj,m ﬁt,y_ﬁj,y O Ej,a:_ﬁt,a: ﬁj,y_ﬁt,y

hz’ - ah(:uta]) - VALY V4t V4t B /—th
t a(xt, m]) Fiy  Ft,y Ht oz Hj x _1 Hi oy Hj oy Hijox—Ht x
qt,j dt,; qt,;j qt,j

where q; ;= (jp = Fea)” + (Hjy = Firy)®

* Second term, a 5 x (3+2N) matrix, maps ht into H}:

(1 0O 0 0---0 0 O O---O\

o1 0 0---0 0 0 0---0
P o o0 1 0---0 0 0 0---0
“10 0 0 0---0 1 0 0---0
o 0 0 0---0 0 1 0---0

N—— N——

\ 2j—2 2N—2j)
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Initialization

* Initial belief expressed as

1o = (0,0,0...0)F

Initialization 0O 0 O 0 O\
flions /0 0 01 0 0
0 0 0 0 0

L E0=10 0 0 o 0
(3+2N) x (3+2N) X : . :
\0 0 0 0 ... o0/
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Initialization

* When a landmark is observed for the first time, the landmark
T
estimate (ﬁj’x, ﬁj,y) is initialized with the expected position, that is

(ﬁj:lj) s (ﬁt,x) . (7“2 COS(QS% +Et,9))
:Uj_,y ﬁt,y "“2 SlH(Qﬁ; =T ﬁt,é’)

* Bearing only SLAM would require multiple sightings

11/17/22 AA 274 | Lecture 15 13



EKF SLAM algorithm Dl (e w B L

Result: (., 2¢)
ﬁt - g(utnut—l);

. . . . . N P .
* Similar to EKF localization; main Py =Gyl i}

. T 7 N
differences: for‘;.afh(jt =lrrgil)™ do
= ci;
° Augmented state vector if landmark j never seen before then
« Augmented dynamics (with trivial Piz) = (Pea) 4 (T8 080+ Brg)).
. Fjy Fot .y r¢ sin(@y + iy g)
dynamics for the landmarks) Gt
* Initialization of unseen landmarks 5y ( \/(Ej,x Ty o)?+ (g — e y)? >;
* Augmented measurement Jacobian atan2(fr; , — Mty Bjx — Bi,p) — B

St = H{ 34 [H{]" + Qy;
Ki =X [H{" [SH] 7Y
B, = B + Ki(2) — 2))
Y= - KZHZ) 2t;
end

[ = i, dnd. 2y, = 2
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Example

©
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EKF SLAM with unknown correspondences

* Key idea: use an incremental maximum likelihood estimator to
determine correspondences

 Similar to EKF localization with unknown correspondences, but now
we also need to create hypotheses for new landmarks

* Caveat: maximum likelihood data association often makes the
algorithm brittle, as it is not possible to revise past data associations
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COFFESpOﬂdEﬂCES

* In the measurement update
oop, we first create the
hypothesis of a new
andmark

* A new landmark is created
if the Mahalanobis distance
to all existing landmarks
exceeds the value «

11/17/22

AA 274 | Lecture 15

e
EKF SLAM with unknown

Data: (p¢—1,2¢-1),us, 2, N1
Result: (pu, 2¢)

Ny = Ny_y; Hypothesis
fir = g(ue, pre—1); for new

St = GtEi—1G" + Ry landmark
foreach 2! = (r!, ¢1)T do s

(ﬁNt—f—l,IL’) — (ﬁt,:c) a3 (Tz COS(Q% +Et,9)>.
ﬁNt—Fl,y ﬁt,y T% Sll’l((b% + /'Lt.ﬂ) ’
for k=1 to N; +1 do
o ( V Bie = Fun) + [y = By )
atan2(fi; , — Fyy Bjo — Pra) — Peo
Htk = ]’Li” Fz’k;
st = HES (BT + Qu
i sK\T [Qkl1—1 (i _ 2k
7w = (2 —2 S By —.2 ) .
(& =TS G | anobis
distance

end

TN+1 = &5

j(i) = argmin,, m;;«—— Hypothesis test
Ny = max{Ny, j(i)};

Ki =%, [H]9)7 [$]9]

B =T, + Ki(zi — ),

S = (I - KiH]Y) S,

end

e = iy and Xy = it;
Return (u:, 2¢) 17



Making EKF SLAM robust

* A key issue is represented by the fact that fake landmarks might be
created; furthermore, EKF can diverge if nonlinearities are large

* Several techniques exist to mitigate such issues
1. Outlier rejection schemes, for example via provisional landmark lists

2. Strategies to enhance the distinctiveness of landmarks

e Spatial arrangement
* Signatures
* Enforcing geometric constraints

* Dilemmma of EKF SLAM: accurate localization typically requires dense
maps, but EKF requires sparse maps due to quadratic update
complexity
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Particle filter SLAM

* Key idea: use particles to approximate the belief, and particle filter to
simultaneously estimate the robot path and the map

e Goal is to solve full-scale SLAM, i.e., estimate

p(wlzta m, C¢ | 21:t, ul:t)

* Challenge: naive implementation of particle filter to SLAM is
intractable, due to the excessively large number of particles required

* Key insight: knowledge of the robot’s true path renders features
conditionally independent -> mapping problem can be factored into
separate problems, one for each feature in the map
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Factoring the posterior

* The key mathematical insight behind particle filter SLAM is the
factorization of the posterior

N
P(y1:t | 216, uaie, €1:6) = (@1t | 2120, urets c11) | | p(mn | 218, 2126, €1:0)

T

SLAM posterior Path posterior Feature posterior
(particles) (EKF)
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Factoring the posterior

* Intuition
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Factoring the posterior

* Proof follows from Bayes’ rule and induction
* Step #1:

p(ylzt | Z1:ty Uty Cl:t) — p(xlzt | Z1:ty Ul:t, Cl:t)p(m | L1:ty Z1:ty Ul:t Cl:t)

— p(xlzt I Z1:ty Ul:t, Cl:t) P(m | L1:ty Z1:t Cl:t)
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Factoring the posterior

e Step 2.a: assume c; ¥ n
D(Myy | T1ats 21245 C1:it) = P(Mi | T1:8—1, 2161, C1i0—1)

* Step 2.b: assume ¢; = n

p(ze | Me,, T1:ty 21:6—1, C1:¢) P(Me, | T1:¢, 21:6—1, C1:t)
p(Zt | L1:tyR1:t—15 Cl:t)

P2 | e, 5 Bz, B ) P(We, | Baipt9208-05C18-1)

B p(zt | T1:tyR1:t—1, Cl:t)

p(mct | L1:ty 21:t, Cl:t) —
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Factoring the posterior

 Step 3 (induction): assume at time t — 1 (induction hypothesis)
N

p(m | L1:t—1y21:t—1, Cl:t—l) — H p(mn | L1:t—1y21:t—1, C1:t—1)

n=1
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Factoring the posterior

e Then attime t

p(zi | m, T1:t, 21:¢—-1, C1:t) P(M | T1:t, 21061, C1:t)
(2t | 1.t 21:4—1, C1:t)

Pl By Wi,y PR Brig—sPig-5,C15-0)

a DUt | B Zi=T51C15E)

p(m | 1.4, 214, C1:t) =

N
. p(z¢ |m, ¢, ct)
= H p(mn | Z1:6-1, 21:4-1, C1:—1)
p(zt | L1:ty 21:t—1, Cl:t) ]
p(Zt | m, T, ct)
- p(Me, | T1:4-1, 21:6—1, C1:4-1) H p(Mn | T1:6-1, 21:4-1, C1:—1)
P(Zt | @1:t; 21201, C1ee) S ~ Feriul ~- >
Steb 2.b ¢ Steb 2.a

N N
= p(me, | T1:t, 210, c1:t) || PO | 210, 210, c1:0) = [ | (M| @128, 2120, €120)
n=1 n=1
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Fast SLAM with known correspondences

* Key idea: exploit factorization result to decompose problem into sub-
problems

* Path posterior is estimated using particle filter

* Map features are estimated via EKF conditioned on the robot path (one EKF
for each feature)

* Accordingly, particles in Fast SLAM are represented as

v = (a5, )
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Fast SLAM with known correspondences

* Each particle possesses its own set of EKFs!
* In total there are NM EKFs

* Filtering involves generating a new particle set Y; from Y;_, by
incorporating a new control u; and a new measurement z; with
associated correspondence variable c¢;

e Update entails three steps
1. Extend path posterior
2. Update observed feature estimate
3. Resample
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Step 1: Extending path posterior

* For each particle Yt[k], sample pose x; according to motion posterior

zy ~ p(Ty | 25y, Uy)

 Sample xt[k] is then concatenated

with previous poses xyft]_l
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Step 2: updating observed feature estimate

* This step entails updating the posterior over the feature estimates
*lfc; #n

<,Ugi]t7 Egﬁ]t> = <:LL£7I,€,]t—17 Ef[ri]t—1>

.IfCt: n

P(mct |$1:ta Zl:taclzt) — np(zt |mctaxta Ct)p(mct |$1:t—17 R1:t—1 Cl:t—l)
T

k i
B N(:ugz,]t—la ZL,]t—l)
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Step 2: updating observed feature estimate

* To ensure that the new estimate is Gaussian as well, measurement
model is linearized as usual

k k k K k k
h(mctaxf[ﬁ ]) ~ h(:ugt],t—laxz[‘, ]) T h,(/ﬁg ]t 1axw[: ])(mct — :u[ct],t—l)
\_v_./
.= H ¥}

1

* Mean and covariance are then obtained as per standard EKF

KM =z HET (HEEE L HET 4+ @)

k 5 k ~|k
#E;t],t = HLt],t—l £h Kt[ ](Zt = Zi ])

k k] rrlk]l\ [k
o= - KO HMNED,
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Step 3: resampling

* Step 1 generates pose x; only in accordance with the most recent
control u;, paying no attention to the measurement z;

e Goal: resample particles to
correct for this mismatch

0.3 ¢

Resampling

|||||||||||||||||||||

1 L
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-
Step 3: resampling

* How do we find the weights?
e Path particles at this stage are distributed according to

k k
p(a:[Ll | 21:6—1, Ul:t, Crie—1) = P(T | T5_1, ut)p(:v[lzl_l | 2161, U1:6=1,C1:4—1)

T T

Distribution of path

]

Sampling distribution [k
particles in ¥, _]

* The target distribution takes into account z;, along with ¢;
k
p(x[ll | Z1:t, Ul:t, Cl:t)
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-
Step 3: resampling

* Importance factor is then given by

13 _ p(x[lkl |letau1:taclzt)

t k
P(x[l;l | Z1:t—1, Ul:t, Cl:t—l)

k k
_ np(zt | x[l;la R1:t—1y Ul:¢, Cl:t)p(x[ln]j | y Z1:t—1 Ul:t, Cl:t)

k
P(le[l;l | Z1:t—1, Ul:t, Cl:t—l)

k]

k
np(zt | Ly Ct)p(x[l:l, | y R1:t—15 U1t Cl:t—l)
k
p(x[ll, | R1:t—1 Ul:t, C1:t—1)

— 77P(Zt | 377[5k]

7Ct)
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-
Step 3: resampling

. ] [] f . f [k]
To derive an (approximate) close-form expression for w, -, one can

then apply the total probability law along with a linearization of the
measurement model to obtain

! = ndet(2nQl)H exp { -5 — IQIY et - 21 |

N1 A ED Y S e Y
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Data: Yrt—la Ut, Zt, Ct
Result: Y;

Fast Slam algorithm for = 1. f0 M do

xy ~ p(xe | 2o, up);

J = ¢

if feature 5 never seen before then
| initialize feature

 Key fact: only the most else
i i 2= h(uly g 2" );
recent pose is useql in the e Tt o
process of generating a Q=HsY BT 4 Q,
. . _ y(K] —1.

new particle at time t! K =By B Qs
iz = Mjz—1 + K(ze — 2);
oM = -k _;
w¥ = det(27Q) "% exp { —3(z; — 2)Q; (2 — 2)};

end
for all other features n # 7 do

k k k k
’ <:u'£1,]ta E'Ez,]t> = <lu”£7,,]t—].’ ZL]t—1>3

for : =1 to M do
Draw k with probability oc w!*;

Add (o}, ul, 2, il 2R, ) o Vi

end

Return Y;
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Fast SLAM with unknown correspondences

» Key advantage of particle filters: each particle can rely on its own,
local data association decisions!

* Key idea: per-particle data association generalizes the per-filter data
association to individual particles

* Each particle maintains a local set of data association variables, 6£k]
e Data association is solved, as usual, via maximum likelihood
estimation
ALK] AlK] K]
& )

= argmax p(2¢ | Ct, €141, T1py 2181, UL:t

Ct
\ Computed, as usual, via total

probability law + linearization
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Summary: Gaussian filtering (EKF, UKF)

* Key ideas:
* Represent a belief with a Gaussian distribution
* Assume all uncertainty sources are Gaussian

* Pros:
* Runs online
* Well understood
* Works well when uncertainty is low

* Cons:
* Unimodal estimate
» States must be well approximated by a Gaussian
* Works poorly when uncertainty is high
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Summary: particle filter approaches

* Key ideas:
* Approximate belief with particles
* Use particle filters to perform inference

* Pros:

Can handle “any” noise distribution
Relatively easy to implement

Naturally represents multimodal beliefs
Robust to data association errors

* Cons:
* Does not scale well to large dimensional problems
* Might require many particles for good convergence
* Might have issues with loop closure
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Final considerations

* A recent overview of SLAM (with strong focus on graph SLAM): c. cadena,

L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira, I. Reid, and J. J. Leonard. "Past, present, and future of
simultaneous localization and mapping: Toward the robust-perception age." IEEE Transactions on Robotics 32,
no. 6 (2016): 1309-1332.

* Trends: from the classical age, to the algorithmic-analysis age, to the
robust perception age

* Popular software packages
e https://www.openslam.org/: comprehensive list of open-source SLAM software
* https://github.com/pamela-project/slambench: popular benchmark framework
 Commercial SDKs: ARCore/ARKit from Google/Apple, Oculus Insight
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https://www.openslam.org/
https://github.com/pamela-project/slambench

Next time
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