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Today’s lecture
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• Aim
• Learn about the general SLAM problem
• Learn about EKF SLAM
• Introduce particle filter SLAM

• Readings
• S. Thrun, W. Burgard, and D. Fox. Probabilistic robotics. MIT press, 2005. 

Sections 8.1 – 8.3, 10.1 – 10.4
• S. Thrun, W. Burgard, and D. Fox. Probabilistic robotics. MIT press, 2005. 

Sections 13.1-13.3, 13.5
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Simultaneous Localization and Mapping

The SLAM problem: 
given measurements 
𝑧!:# and controls 𝑢!:#, 
find the path (or pose) 
of the robot and 
acquire a map of the 
environment
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Forms of SLAM

• Online SLAM problem: estimate the posterior over the momentary 
pose along with the map

• Full SLAM problem: estimate posterior over the entire path along 
with the map
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Graphical models of SLAM

m
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The challenge of SLAM
• Robot path and map are both unknown

• Path error is correlated with map error
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EKF SLAM

• Historically the earliest SLAM algorithm 
• Key idea: apply EKF to online SLAM using maximum likelihood data 

association
• Assumptions:

1. Gaussian assumption for motion and perception noise, and Gaussian 
approximation for belief (essential)

2. Feature-based maps (essential)

• Two versions of the problem
1. Correspondence variables are known
2. Correspondence variables are not known (usual case)
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EKF SLAM with known correspondences

• Similar to EKF localization algorithm with known correspondences
• Key difference: in addition to estimate the robot pose 𝑥#, the EKF 

SLAM algorithm also estimates the coordinates of all landmarks
• Define combined state vector

• Goal: calculate the online posterior  
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Motion and sensing model

• (Following discussion is for illustration purposes; setup can be 
generalized to other motion and sensing models)
• Assume motion model with state 𝑥# = (𝑥, 𝑦, 𝜃)

where we assume that the landmarks are static, that is
1. 𝑔(𝑢!, 𝑦!"#) is a 3+2N vector, whose last 2N components are the same as 

those in 𝑦!"#
2. 𝑅! has zero entries, except for the top left 3 x 3 block
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Motion and sensing model
• Assume range and bearing measurement model

• Usual linear approximation for sensing model (with 𝑗 = 𝑐#$)

• Since ℎ depends only on 𝑥# and 𝑚%, 𝐻#$ can be factored as
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Motion and sensing model
• First term, a 2 x 5 matrix, is the Jacobian of ℎ(𝑦# , 𝑗) at 𝜇̅# w.r.t. 𝑥# and 𝑚%:

• Second term, a 5 x (3+2N) matrix, maps ℎ#$ into 𝐻#$:
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Initialization

• Initial belief expressed as
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Initialization 
for pose 
variables

(3+2N) x (3+2N)
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Initialization

• When a landmark is observed for the first time, the landmark 
estimate 𝜇̅%,' , 𝜇̅%,(

)
is initialized with the expected position, that is

• Bearing only SLAM would require multiple sightings
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EKF SLAM algorithm

• Similar to EKF localization; main 
differences:
• Augmented state vector 
• Augmented dynamics (with trivial 

dynamics for the landmarks)
• Initialization of unseen landmarks
• Augmented measurement Jacobian
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Example
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EKF SLAM with unknown correspondences

• Key idea: use an incremental maximum likelihood estimator to 
determine correspondences
• Similar to EKF localization with unknown correspondences, but now 

we also need to create hypotheses for new landmarks
• Caveat: maximum likelihood data association often makes the 

algorithm brittle, as it is not possible to revise past data associations
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EKF SLAM with unknown 
correspondences
• In the measurement update 

loop, we first create the 
hypothesis of a new 
landmark
• A new landmark is created 

if the Mahalanobis distance 
to all existing landmarks 
exceeds the value 𝛼
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Making EKF SLAM robust
• A key issue is represented by the fact that fake landmarks might be 

created; furthermore, EKF can diverge if nonlinearities are large
• Several techniques exist to mitigate such issues

1. Outlier rejection schemes, for example via provisional landmark lists
2. Strategies to enhance the distinctiveness of landmarks

• Spatial arrangement
• Signatures 
• Enforcing geometric constraints

• Dilemma of EKF SLAM: accurate localization typically requires dense 
maps, but EKF requires sparse maps due to quadratic update 
complexity
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Particle filter SLAM

• Key idea: use particles to approximate the belief, and particle filter to 
simultaneously estimate the robot path and the map
• Goal is to solve full-scale SLAM, i.e., estimate

• Challenge: naïve implementation of particle filter to SLAM is 
intractable, due to the excessively large number of particles required
• Key insight: knowledge of the robot’s true path renders features 

conditionally independent -> mapping problem can be factored into 
separate problems, one for each feature in the map 
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Factoring the posterior

• The key mathematical insight behind particle filter SLAM is the 
factorization of the posterior
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SLAM posterior Path posterior
(particles)

Feature posterior
(EKF)
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Factoring the posterior
• Intuition
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Factoring the posterior

• Proof follows from Bayes’ rule and induction
• Step #1:
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Factoring the posterior

• Step 2.a: assume 𝑐# ≠ 𝑛

• Step 2.b: assume 𝑐# = 𝑛
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Factoring the posterior

• Step 3 (induction): assume at time 𝑡 − 1 (induction hypothesis)
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Factoring the posterior

• Then at time 𝑡
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Fast SLAM with known correspondences

• Key idea: exploit factorization result to decompose problem into sub-
problems
• Path posterior is estimated using particle filter
• Map features are estimated via EKF conditioned on the robot path (one EKF 

for each feature)

• Accordingly, particles in Fast SLAM are represented as
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Fast SLAM with known correspondences

• Each particle possesses its own set of EKFs!
• In total there are NM EKFs
• Filtering involves generating a new particle set 𝑌# from 𝑌#*! by 

incorporating a new control 𝑢# and a new measurement 𝑧# with 
associated correspondence variable 𝑐#
• Update entails three steps

1. Extend path posterior 
2. Update observed feature estimate
3. Resample

AA 274 | Lecture 15 2711/17/22



Step 1: Extending path posterior 

• For each particle 𝑌#
[,], sample pose 𝑥# according to motion posterior
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• Sample 𝑥#
[,] is then concatenated 

with previous poses 𝑥!:#*!
[,]
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Step 2: updating observed feature estimate

• This step entails updating the posterior over the feature estimates
• If 𝑐# ≠ 𝑛

• If 𝑐# = 𝑛
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Step 2: updating observed feature estimate
• To ensure that the new estimate is Gaussian as well, measurement 

model is linearized as usual

• Mean and covariance are then obtained as per standard EKF
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Step 3: resampling

• Step 1 generates pose 𝑥# only in accordance with the most recent 
control 𝑢#, paying no attention to the measurement 𝑧#
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Resampling

• Goal: resample particles to 
correct for this mismatch
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Step 3: resampling
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• How do we find the weights?
• Path particles at this stage are distributed according to

• The target distribution takes into account 𝑧#, along with 𝑐#

Sampling distribution Distribution of path 
particles in 𝑌!"#

[%]
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Step 3: resampling

• Importance factor is then given by

AA 274 | Lecture 15 3311/17/22



Step 3: resampling

• To derive an (approximate) close-form expression for 𝑤#
[,], one can 

then apply the total probability law along with a linearization of the 
measurement model to obtain 
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Fast Slam algorithm

• Key fact: only the most 
recent pose is used in the 
process of generating a 
new particle at time t!
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Fast SLAM with unknown correspondences

• Key advantage of particle filters: each particle can rely on its own, 
local data association decisions!
• Key idea: per-particle data association generalizes the per-filter data 

association to individual particles

• Each particle maintains a local set of data association variables, 𝑐̂#
[,]

• Data association is solved, as usual, via maximum likelihood 
estimation
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Computed, as usual, via total 
probability law + linearization
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Summary: Gaussian filtering (EKF, UKF) 

• Key ideas:
• Represent a belief with  a Gaussian distribution 
• Assume all uncertainty sources are Gaussian 

• Pros:
• Runs online
• Well understood
• Works well when uncertainty is low

• Cons:
• Unimodal estimate
• States must be well approximated by a Gaussian
• Works poorly when uncertainty is high
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Summary: particle filter approaches 
• Key ideas:
• Approximate belief with particles
• Use particle filters to perform inference

• Pros:
• Can handle “any” noise distribution
• Relatively easy to implement
• Naturally represents multimodal beliefs
• Robust to data association errors

• Cons:
• Does not scale well to large dimensional problems
• Might require many particles for good convergence
• Might have issues with loop closure
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Final considerations

• A recent overview of SLAM (with strong focus on graph SLAM): C. Cadena, 
L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira, I. Reid, and J. J. Leonard. "Past, present, and future of 
simultaneous localization and mapping: Toward the robust-perception age." IEEE Transactions on Robotics 32, 
no. 6 (2016): 1309-1332.

• Trends: from the classical age, to the algorithmic-analysis age, to the 
robust perception age
• Popular software packages
• https://www.openslam.org/: comprehensive list of open-source SLAM software
• https://github.com/pamela-project/slambench: popular benchmark framework
• Commercial SDKs: ARCore/ARKit from Google/Apple, Oculus Insight
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Next time
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