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Today’s lecture
• Aim
• Learn about non-parametric filters

• Readings
• S. Thrun, W. Burgard, and D. Fox. Probabilistic robotics. MIT press, 2005. 

Sections 3.1 – 3.4, 4.1, 4.3, 7.1 
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Instantiating the Bayes’ filter

• Tractable implementations of Bayes’ filter exploit structure and / or 
approximations; two main classes
• Parametric filters: e.g., KF, EKF, UKF, etc. 
• Non parametric filters: e.g., histogram filter, particle filter, etc.
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: convex regions 
forming a partition of state 
space (e.g., grid cell)

Histogram filter
• Key idea: use discrete Bayes’ filter as an approximate inference tool 

for continuous state spaces

• Step #1: histogram filters decompose a continuous space into finitely 
many bins

State space
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Example

611/10/22 AA 274 | Lecture 13



Histogram filter

• Step #2: assign to each region 𝑥!,# a probability 𝑝!,#; probabilities are 
then approximated according to a piecewise scheme
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Histogram filter
• Step #3: discretize motion and measurements models, i.e.,

1. Select mean state as representative state

2. Approximate measurement model

3. Approximate transition model

• Step #4: execute discrete Bayes’ filter with discretized probabilities

and
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Histogram filter

9

• Belief 𝑏𝑒𝑙(𝑥#)
represented as pmf
{𝑝!,#}

• Then one can run the usual discrete Bayes’ filter
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Particle filter

• Key idea: represent posterior 𝑏𝑒𝑙(𝑥#) by a set of random samples

• Allows one to represent non-Gaussian distributions and handle 
nonlinear transformations in a direct way
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Particle filter

• Samples of posterior distribution are called particles, denoted as

• A particle represents a hypothesis about what the true world state 
might be at time t
• Ideally, particles should be distributed according to

• Matching exact only as 𝑀 → ∞, but 𝑀 ≈ 1000 usually good enough
• A particle filter constructs the particle set       from the particle set 

recursively, with the goal of matching the distribution 𝑏𝑒𝑙(𝑥#)
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Particle filter: example

12

• Resampling can be a high variance 
process (e.g., “weight collapse” can be 
a problem) motivating the development 
of lower variance schemes and/or 
recovery processes
• Many extensions/variants (e.g., 

Gaussian Sum Particle Filtering in which 
belief is represented as a Gaussian 
Mixture Model)
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Particle filter: algorithm

• The temporary particle set  
represents the belief 𝑏𝑒𝑙 𝑥#
• The particle set      represents 

the belief 𝑏𝑒𝑙(𝑥#)
• Importance factors are used to 

incorporate measurement 𝑧# in 
the particle set
• After resampling, particles are 

(as 𝑀 → ∞) distributed as

𝑏𝑒𝑙(𝑥!"#)

𝑏𝑒𝑙(𝑥!)

Prediction:
𝑏𝑒𝑙(𝑥!)

Correction:
𝑏𝑒𝑙(𝑥!)

Importance 
factor

1311/10/22 AA 274 | Lecture 13



Next time
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