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Today’s lecture
• Aim
• Learn about parametric filters

• Readings
• S. Thrun, W. Burgard, and D. Fox. Probabilistic robotics. MIT press, 2005. 

Sections 3.1 – 3.4, 4.1, 4.3, 7.1 
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Instantiating the Bayes’ filter

• Tractable implementations of Bayes’ filter exploit structure and / or 
approximations; two main classes
• Parametric filters: e.g., KF, EKF, UKF, etc. 
• Non parametric filters: e.g., histogram filter, particle filter, etc.
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Gaussian distributions
• Key idea: belief represented as multivariate normal distribution
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Key properties of Gaussian random variables

• If                              ,  then 

• The sum of two independent Gaussian RVs

is Gaussian, specifically

• The product of Gaussian pdf is also Gaussian
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Kalman filter (KF)

• Assumption #1: linear dynamics

• Independent process noise 𝜖! is                    

• Assumption #1 implies that the probabilistic generative model is 
Gaussian
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Kalman filter (KF)

• Assumption #2: linear measurement model

• Independent measurement noise 𝛿! is 

• Assumption #2 implies that the measurement probability is 
Gaussian
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Kalman filter (KF)

• Assumption #3: the initial belief is Gaussian

• Key fact: These three assumptions ensure that the posterior 𝑏𝑒𝑙(𝑥!)
is Gaussian for all t, i.e., 
• Note:
• KF implements belief computation for continuous states
• Gaussians are unimodal -> commitment to single-hypothesis filtering 
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Recap – Bayes Filter
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Kalman filter: algorithm
𝑏𝑒𝑙(𝑥!"#)

𝑏𝑒𝑙(𝑥!)

Prediction:
𝑏𝑒𝑙(𝑥!)

Correction:
𝑏𝑒𝑙(𝑥!)

Project state ahead

Project covariance ahead

Compute Kalman gain

Update estimate with new measurement

Update covariance

Prediction

Correction
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Kalman filter: derivation (sketch)

• Prediction

• Recalling that 

with
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Kalman filter: derivation (sketch)
• Correction

• After some algebraic manipulations

• Other derivations are possible; see, e.g., R. E. Kalman, A new approach to linear 
filtering and prediction problems. Journal of Basic Engineering, 82(1), 35-45, 1960.

with
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Revisiting linearity assumption
• KF crucially exploits the 

property that a linear 
transformation of a Gaussian 
RV results in a Gaussian RV 
• However, linearity assumptions 

are severely restrictive for 
robotics applications
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Extended Kalman filter (EKF)

• Goal: relax the linearity assumption
• The dynamics are now given by

• And the measurement model is now given by

• Key idea: shift focus from computing exact posterior to efficiently 
compute a Gaussian approximation 
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Goal of EKF
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EKF: key idea

• Key idea: linearize g and h around the most likely state and 
transform beliefs according to such linear approximations 
• For the dynamics equation 

• Accordingly 

Jacobian of g
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EKF: key idea

• For the measurement model

• Accordingly,
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EKF: algorithm

• Main differences:
1. Linear predictions are replaced 

by their nonlinear generalizations
2. EKF uses Jacobians instead of 

linear system matrices
3. Mathematical derivation of EKF 

parallels that of KF
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EKF: examples
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EKF: examples
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EKF: examples
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Unscented Kalman filter (UKF) – basic idea

• Taylor series expansion applied by EKF is not the only way to 
approximate the transformation of a Gaussian; other approaches
• Assumed density filter
• Unscented Kalman filter (UKF)

EKF UKF
1. Compute sigma-points
2. Transform each sigma 

point through 
nonlinear function 

3. Compute Gaussian 
from the transformed 
and weighted sigma-
points

Transform pdf through 
linearized function
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UKF: example

EKF UKF
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UKF: example

EKF UKF
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Next time
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