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Technigues for information extraction

e Aim
e | earn hOW to extract information from sensor measurements

* Readings
 Siegwart, Nourbakhsh, Scaramuzza. Introduction to Autonomous Mobile
Robots. Sections: 4.1.3,4.6.1-4.6.5,4.7.1-4.7.4
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The see-think-act cycle
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Information extraction

* Next step is to extract information from images, such as

* Geometric primitives (e.g., lines and circles): useful, for example, for robot
localization and mapping

* Object recognition and scene understanding: useful, for example, for
localization within a topological map and for high-level reasoning
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Geometric feature extraction

» Geometric feature extraction: extract geometric primitives from
sensor data (e.g., range data)

* Examples: line, circles, corners, planes, etc.

* We focus on line extraction from range data (a quite common task);
other geometric feature extraction tasks are conceptually
analogous

* The two main problems of line extraction from range data

1. Which points belong to which line? = segmentation

2. Given an association of points to a line, how to estimate line parameters?
-> fitting
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Step #2: line fitting

e Goal: fita line to a set of sensor measurements

* It is useful to work in polar coordinates: y
x =pcosf, y=psinb

* Equation of a line in polar coordinates
* Let P = (p, 8) be an arbitrary point on the line
* Since P, Py, O determine a right triangle

pcos(@ —a) =r| o xcosa+ysina=r

* (r,a) are the parameters of the line

> X
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Step #2: line fitting

* Since there is measurement error, the equation of the line is only
approximately satisfied

p; cos(f; — a) =r +d;
Error

* Assume n ranging measurement points
represented in polar coordinates

as (Pi» 9i)
e We want to find a line that best “fits” all
the measurement points
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Step #2: line fitting

* Consider, first, that all measurements are equally uncertain
* Find line parameters (r, @) that minimize squared error

S(r,a) = de — Z(pz cos(f; — a) — r)?

1=1

* Unweighted least squares
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Step #2: line fitting

e Consider, now, the case where each measurement has its own,
unique uncertainty

* For example, assume that the variance for each range
measurement p; IS g;

* Associate with each measurement a weight, e.g., w; = 1/01-2
* Then, one minimizes

S(r,a) = Zwi di = Zwi (p; cos(8; — ) — 1)?
=1 =1
* Weighted least squares
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Step #2: line fitting solution

* Assume that the n ranging measurements are independent
* Solution:

1 D w;p; sin 20; — ﬁ D Zj w;W;p; P4 cos B; sin b . -

o = —atan2
2 (ZZ w; p? cos 20; — ﬁzz D Wil pip; COS(QZ'—I—HJ')) 2

Zz’ W; P4 COS(QZ' — Oé)
D i Wi

T =
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Step #1: line segmentation

* Several algorithms are available

* We will consider three popular algorithms
1. Split-and-merge
2. RANSAC
3. Hough-Transform
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Split-and-merge algorithm

* Most popular line extraction algorithm

Data: Set S consisting of all N points, a distance threshold d > 0
Result: L, a list of sets of points each resembling a line
L+ (S),i+1;

while i < len(L) do
fit a line (r,a) to the set L;; ® ® ®
detect the point P € L; with the maximum distance D to the line (r,a); ®
if D < d then
| iei+1
else ®
split L; at P into 51 and S;
[,.,' — S|; [_,_,'fl Sz; .
end
end o

Merge collinear sets in L;
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Split-and-merge algorithm

* Most popular line extraction algorithm

Data: Set S consisting of all N points, a distance threshold d > 0
Result: L, a list of sets of points each resembling a line
L+ (S),i+1;
while i < len(L) do
fit a line (r,a) to the set L;;
detect the point P € L; with the maximum distance D to the line (r,a);
if D < d then
| i+i+1
else
split L; at P into 51 and S;
L; + S1; Litq1 + S2;

end

end
Merge collinear sets in L;
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Split-and-merge algorithm

* Most popular line extraction algorithm

Data: Set S consisting of all N points, a distance threshold d > 0

Result: L, a list of sets of points each resembling a line

L+ (S),i+1;

while i < len(L) do

fit a line (r,a) to the set L;;

detect the point P € L; with the maximum distance D to the line (r,a); b

if D < d then

| i+i+1

else
split L; at P into 51 and S;
L; + S1; Liyq + S2; ®

end

end q

Merge collinear sets in L;

10
.
I
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-
Split-and-merge:
iterative-end-point-fit variant

* Iterative-end-point-fit: split-and-merge where the line is
constructed by simply connecting the first and last points (as
opposed to least squares fit)

Merge No more splits

Credit: SNS
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R EEEEEEEEE—————S——m—m—m———
RANSAC

 RANSAC: Random Sample Consensus

* General method to estimate parameters of a model from a set of
observed data in the presence of outliers, where outliers should
have no influence on the estimates of the values

* Typical applications in robotics: line extraction from 2D range data,
plane extraction from 3D point clouds, feature matching for
structure from motion, etc.

* RANSAC is iterative and non-deterministic: the probability of finding
a set free of outliers increases as more iterations are used
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R EEEEEEEEE—————S——m—m—m———
RANSAC

Data: Set S consisting of all N points

Result: Set with maximum number of inliers
(and corresponding fitting line)

while i < k£ do

randomly select 2 points from S;

fit line [; through the 2 points; . ;

compute distance of all other points to line /; ; . ) *

construct inlier set, i.e., count number of ) e
points with distance to the line less than ~; . .

store line /; and associated set of inliers; )

t—1i+1 .

end .

Choose set with maximum number of inliers
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R EEEEEEEEE—————S——m—m—m———
RANSAC

Data: Set S consisting of all N points

Result: Set with maximum number of inliers *
(and corresponding fitting line) Ry
while i < k£ do ‘ ‘ %
randomly select 2 points from S; ‘ o 4 &
fit line /; through the 2 points; I N .
compute distance of all other points to line [; ; ] ’ O Z y )
construct inlier set, i.e., count number of e - P
points with distance to the line less than ~; . L ° <
store line /; and associated set of inliers; ‘
i—i+1 ‘ 7
end b/ ayd ‘ .
Choose set with maximum number of inliers )
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R EEEEEEEEE—————S——m—m—m———
RANSAC

Data: Set S consisting of all N points

Result: Set with maximum number of inliers
(and corresponding fitting line)

while i < k£ do

randomly select 2 points from S;

fit line /; through the 2 points;
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RANSAC iterations

* In principle, one would need to check all possible combinations of 2
points in dataset

 If |S| = N, number of combinationsis N(A;_l) - too many

* However, if we have a rough estimate of the percentage of inliers,
we do not need to check all combinations...
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RANSAC iterations: statistical characterization

* Let w be the percentage of inliers in the dataset, i.e.,

number of inliers

N

w =

* Let p be the desired probability of finding a set of points free of
outliers (typically, p = 0.99)

* Assumption: 2 points chosen for line estimation are selected
independently

* P(both points selected are inliers) = w

« P(atleast one of the selected points is an outlier) =1 —w

« P(RANSAC nevers selects two points that are both inliers) = (1 — w?)¥

2
2
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RANSAC iterations: statistical characterization

e Then minimum number of iterations k to find an outlier-free set
with probability at least p is:

£ .7 log(1—p)
l-p=(01-wd)f=k=
p=(1-w) log(1 — w?)

* Thus if we know w (at least approximately), after k iterations
RANSAC will find a set free of outliers with probability p

* Note:
* k depends only on w, noton N!
* More advanced versions of RANSAC estimate w adaptively
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Hough transform

 Key idea: each point votes for a set of plausible line parameters
Ya

* Aline has two parameters: (m, b)
y=mx+b

* Given a point (x;,y;), the lines that could pass

through this point are all (m, b) satisfying . x
A

y; =mx; +b, orb=-—mzx;+vy; Y
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Hough transform
* A pointinimage space maps into a line in Hough space

Image space Hough parameter space

Y a b A

E—
® o b= —ma;

> >
I m
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Hough transform

* Key fact: all points on a line in image space yield lines in parameter
space which intersect at a common point, (im*, b™)

/('x/jayj) —

(25, 0:)
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Hough transform algorithm

1. Initialize an accumulator array H(m, b) to zero

2. Foreach point (x;,y;), increment all cells that satisfy b = —x;m +

Vi

3. Local maximain arrayyH (m, b) corresponds to lines

10/27/22

blnax
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12 points voted for this line

| > local maximum
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-
Hough transform algorithm:
polar coordinate representation

* Equation of a line in polar coordinates

rcosa+ysina=r

* The parameter space transform of a point is a sinusoidal curve
T

— TiCoOsSa+ Yy, sin =7

e Avoids infinite slope
 Constant resolution
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Hough transform algorithm, revised

Data: Set S containing N points
Result: Line fitting the points in S
Initialize n, X n, accumulator H with zeros;
foreach (z;,y;) € S do
foreach a € {ay,...,a,_} do
compute r = x; cos « + y; sin «;
Hla,r] + Hla,r] + 1;
end
end

Choose (a*,r*) that corresponds to largest count in H;
Return line defined by (a*,7*)
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Hough transform: example

Hough transform
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Detected lines

Input image

=50
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100

50 0 -50
Angles (degrees)



Hough transform: example

* With noise, peaks may be hard to detect




Object recognition

* Object recognition: capability of naming discrete objects in the
world

* Why is it hard? Many reasons, including:

1. Realworld is made of a jumble of objects, which all occlude one another
and appear in different poses

2. Thereis a lot of variability intrinsic within each class (e.g., dogs)

* In this class, we will look at three methods:

1. Template matching
2. Bag of visual words
3. Neural network methods (treated as a black box, take AA274B for details)
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Standard paradigm - CNNs for recognition

Convolution Pooling Convolution Pooling Fully Fully Output Predictions
Connected Connected

dog (0.01)
cat (0.04)
boat (0.94)
bird (0.02)

b

h---

Jd . .0
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Template matching

* How can we find Waldo?

Source: Sanja Fidler
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Template matching

e Slide and compare!

Source: Sanja Fidler
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Template matching

* In practice, remember correlation

I'(z,y) = Fo I_Z ZF@] (z+ i,y +7)

t=—N j=—M
l— Vector representation of filter

. . Vect tation of
- One can equivalently write: I'(x,y) = fT - t; reighborhood patch
1 |

* To ensure that perfect matching yields one, we consider normalized
correlation, that is

-t
I£11{] 5
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Template matching

Result:

Source: Sanja Fidler
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Template matching

Result:

Source: Sanja Fidler
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Template matching

* Problem: what if the object in
the image is much larger or
much smaller than our
template?

* Solution: re-scale the image
multiple times and do
correlation on every size!

* This leads to the idea of image
pyramids
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Image pyramids: scaling down

* Naive solution: keep only some rows and columns
* E.g.: keep every other column to reduce image by 1/2 in width direction
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Image pyramids: scaling down

* Naive solution: keep only some rows and columns
* E.g.: keep every other column to reduce image by 1/2 in width direction

Source:
Sanja Fidler
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Image pyramids: scaling down

* Solution: blur the image via Gaussian, then subsample
* Intuition: remove high frequency content in the image
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Image pyramids: scaling down

* Solution: blur the image via Gaussian, then subsample
* Intuition: remove high frequency content in the image

Source:
Sanja Fidler
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Image pyramids: scaling down

* Solution: blur the image via Gaussian, then subsample
* Intuition: remove high frequency content in the image

Source:
Sanja Fidler
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Image pyramids

* A sequence of images created with Gaussian blurring and down-
sampling is called a Gaussian pyramid

* The other step is to perform up-sampling (nearest neighbor,
bilinear, bicubic, etc.
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Dense ObjectNets - Architecture

X i _>|:|_H‘|:|_> ) X
Data Data

Convolutional Encoder-Decoder




Next time

@ ® @
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