
AA 274A: Principles of Robot Autonomy I

Section 7: ROS Parameters

Our goals for this section:

1. Learn how to use ROS parameters

2. Learn how to dynamically reconfigure node parameters

3. Work on any remaining bugs in your robot planners and controllers

We have reorganized the asl turtlebot repository! Before starting this week’s section be sure to git pull
asl turtlebot and checkout the noetic-devel branch. If you have changed any files, you will want to git

stash them before you pull the changes. You may have to copy over your homework code into the scripts
folder again, and modify some input statements. Specifically,

1. Copy P2 pose stabilization.py to asl turtlebot/scripts/controllers/ (HW1)

2. Copy P3 trajectory tracking.py to asl turtlebot/scripts/controllers/ (HW1)

3. Copy P1 astar.py to asl turtlebot/scripts/planners/ (HW2)

4. Copy the function compute smoothed traj from P3 traj planning.py (HW2) to scripts/planners/path
smoother.py

5. Change from utils import wrapToPi to from utils.utils import wrapToPi in P2 pose stabilization.py

6. Change from utils import plot line segments to from .utils import plot line segments in
P1 astar.py

1 Setting up and using ROS parameters

Often there are parameters that are useful across multiple nodes. Such parameters would ideally be shared
between nodes to ensure that their values throughout your robot stack are in sync. Additionally, there may
be parameters whose values depend on the situation the robot is being launched into, and thus it would not
be ideal for them to be hardcoded and modified for each situation. These are some of the reasons for the
ROS parameter server.

Launch the robot stack using

1 roslaunch asl_turtlebot project.launch

and try the following command:

1 rosparam list

1



Stanford Aeronautics & Astronautics Fall 2021

Problem 1: What does this command do? What paramts do you see listed?

You will see that there are already a large number of parameters on the ROS parameter server.

Problem 2: Where exactly are those being set? Start from project.launch and trace back through all
of the launch files that are called as a result. For each launch file, list a few rosparams that are set within
the file or state that none are set in the file.

Open the config/gmapping config.launch file and you will see that most of the lines are actually setting
parameters! Thus, the value of these is set in a launch file and different launch files could be written to
initialize these parameters differently for a different task.

We can also use rosparam get to see the current value of parameters from the terminal, providing another
way to get information about the current state of your robot stack.

Problem 3: Try using using rosparam get to get the values of 2-3 parameters. List the parameter names
and their values.

1.1 Creating our first ROS params

Now let’s give ROS params a try for our navigator node. The values for maximum rotational velocity of the
robot are not navigator-specific, and thus they could conceivably be shared across nodes.

1. Modify the launch of the navigator node inside project.launch. Make it create parameters v max and
om max within the navigator node namespace and give them the values listed in navigator.py. Take
a look at the gmapping configuration launch file config/gmapping config.launch for an example of
how to do this.

Problem 4: Include your code.

2. Next, modify navigator.py to get the value of these parameters from the ROS param server rather
than hardcoding them in the script. Take a look at supervisor.py for an example of how to do this.
Note the difference between self.rviz = rospy.get_param("rviz") and
self.pos_eps = rospy.get_param("∼pos_eps", 0.1).

Problem 5: Include your code.

1.2 Parameterizing launch files

What if we have another task where we want to run the same stack but with the robot limited to a more
conservative speed? One possibility would be to make another copy of project.launch and change the
values of the parameters inside. However, a more elegant and extremely useful solution is to parameterize
the launch file itself.

Open root.launch in asl turtlebot and you will notice that it is calling a gazebo ros launch file while
passing in some arguments. It additionally has some arguments of its own with default values that could
be overridden if it is called by another launch file that passes in different values for those arguments. As
robot stacks become more complex, you can imagine how crucial it is to be able to hierarchically call trees
of launch files, using such arguments to repurpose each launch file and ultimately parameters and nodes for
the task at hand.

Now using root.launch as an example, modify project.launch again to use launch file arguments to set
default values for the v max and om max parameters. Then create a second launch file project slow.launch

which calls project.launch with max velocity values that are at half the speed.

Problem 6: Test these launch files with your robot sim and paste the contents of your
project.launch and project slow.launch files into your submission.

2



Stanford Aeronautics & Astronautics Fall 2021

2 Dynamically reconfiguring node parameters

ROS params give a great way to synchronize parameters across your stack on node startup, but what if you
want to modify parameters while your nodes are running? There is a ros param set command, but if your
nodes only use ROS params to initialize internal node variables and don’t continue checking them, updating
the ROS params during operation won’t result in any changes.

Thankfully, we have another tool called dynamic reconfigure. We have already set this up for some
parameters in the navigator script. Start the navigator and run

1 rosrun dynamic_reconfigure dynparam list

You will see that dynamic parameters are set up for the pose controller gains in turtlebot navigator. Use

1 rosrun dynamic_reconfigure dynparam get <name >

2 rosrun dynamic_reconfigure dynparam set <name >

to get the current value of the one of the gains and to set it to a different value (see the dynamic reconfigure

documentation).

Reconfiguring parameters like this through the command line is quite tedious, so thankfully there is an
alternative. Run

1 rosrun rqt_reconfigure rqt_reconfigure

This will provide an extremely convenient interface for changing your robot’s parameters on the fly! Give it
a try on the pose controller gains.

2.1 Setting up dynamic parameters

Now let’s try extending this to more parameters in our navigator. Unlike normal ROS params, dynamic
parameters are created in special cfg files. You can find one for the navigator at
asl turtlebot/cfg/navigator.cfg. Check the dynamic reconfigure tutorials to see what the arguments
in the gen.add function mean. Check the dyn cfg callback() function in navigator.py. Now, add a
dynamic parameter for any one parameter from navigator.py — this could be the trajectory smoothing
parameter, the desired velocity, or anything else that you would like to change on the fly!

Problem 7: Test this on your robot sim and paste the contents of your navigator.cfg and
navigator.py files into your submission.

3 Tuning and debugging your planners/controllers

You now have a large number of tools for tuning and debugging your robot stack! Spend any remaining time
practicing using these tools to track down bugs in your planners and controllers and improve the performance
of your robot.

Take note of any inefficiencies in the robot’s current stack that might be improved upon by your group
during the final project!

3


