
AA 274A: Principles of Robotic Autonomy I

Section 5 (in-person): Implementing Point-to-Point Navigation

Our goals for this section:

1. Learn how to read and understand source code for more complex ROS nodes

2. Test controllers from homework on a real robot

3. Learn how to design custom launch files

1 Point to point motion around obstacles

As you saw in the last section, one of the nodes that the section launch file started was gmapping, which uses
LIDAR readings to perform simultaneous localization and mapping (SLAM), giving us an occupancy grid
map of the environment around the robot, as well as an estimate of the robots position within this map.1

A key ability of autonomous agents is the ability to navigate from point to point in the presence of obstacles.
Today we’ll be implementing a navigator ROS node and testing this functionality on the turtlebots!
Open scripts/navigator.py within the asl turtlebot catkin package in a text editor, read the provided
code, and think about how the node works.
Problem 1: What topics does the navigator subscribe to? What is the purpose of each of these
topics? What topics does it publish to, and why?
The navigator uses a state machine to switch between different modes of operation. Carefully read the
functions run and publish control.
Problem 2: Describe what each mode of the state machine does, and intuitively when the
node switches between modes.
You may have noticed that the code logic is similar to the strategy we used in HW2: planning around
obstacles using A*, and using a combination of the pose controller and tracking controller to track the
planned path. In fact, this code calls functions that you wrote in your previous homeworks.
Copy over the following files to asl turtlebot/scripts/controllers/

1 P2_pose_stabilization.py

2 P3_trajectory_tracking.py

and the following from HW2 to asl turtlebot/scripts/planners/

1 P1_astar.py

Also, edit scripts/planners/path smoother.py and copy over the function compute smoothed traj from
HW2’s P3 traj planning.py.
If you need to, use the scp command to copy these files to the robot.

1 # You will need to fill in the '...' with the correct file path!

2 # Below , you need replace "henry" with the name of your robot!

3 scp <file > aa274@henry.local:∼/catkin_ws/src/asl_turtlebot/scripts /...

Now, we’re ready to test the framework on the robot!
On the robot (after ssh-ing in the robot), run

1 roslaunch asl_turtlebot turtlebot3_bringup_jetson_pi.launch

1We’ll be covering SLAM in class next week and learning how gmapping is able to do this, but for now it’s fine to think of
it as magic.

1



Stanford University Principles of Robot Autonomy I - Fall 2021

Then, in a new terminal (after running source ./rostb3.sh to make sure your laptop can communicate with
the robot), run

1 roslaunch asl_turtlebot turtlebot3_nav.launch

Note: make sure that the repo asl turtlebot is in the noetic-devel branch! To do so, run git branch

to check which branch the repo is based on, and run git checkout noetic-devel to switch to the noetic
branch. To build your packages in the catkin workspace, run catkin build.

2 Running the Navigator

From a new terminal, open rviz.
Add relevant topics to the display - the main ones we’ll need are /map, the TF transform tree, and the path
topics /planned path and /cmd smoothed path. The /camera topic will also allow you you see what the
robot sees as it navigates through the maze.
Create a new catkin package (like how we made one in Section 2) with the name section5 and save the rviz
configuration as my nav.rviz in section5/rviz/my nav.rviz.
Problem 3: What is the command to create a new package? (Hint: Take a look at Section
2’s handout for a starting point). What do each of the arguments do? What modifications do
you need to make for the section5 package?
Now you can specify goal poses using the “2D Nav Goal” button in rviz and clicking and dragging on the
map. The robot should move towards the goal if your controllers work correctly!
Problem 4: Test this out. Include a screenshot of rviz as your robot navigates the map.

3 Visualizing the goal position

Using what you learned in last section, write a new node that visualizes the current navigation target in rviz
as a marker. Save this node in the section5 package’s scripts folder.
Problem 5: Describe at a high level how your goal visualizer works. Some questions to get
you started are:

• What topics should it subscribe to in order to stay up to date with the current navigation
target?

• What message type should it publish, and to what topic?

Include this code in your submission.

4 Custom Launch Files

It can be cumbersome to start all the nodes from scratch, and set up rviz every time we want to run the
stack. To make this easier, create a launch file in your section5 package which:

1. starts the navigator.py node from the asl turtlebot package.

2. starts the goal visualization node you just wrote.

3. opens rviz with the configuration file you just saved.

Hint: run rviz --help to see how to pass a configuration file into rviz. Use the ROS documentation and/or
Google to find out how to pass arguments into nodes through a launch file.
Take a look at the launch files in the asl turtlebot package. In particular, lines 75 - 78 of the asl turtlebot

project sim.launch file also provide an example of starting each of these nodes. In addition, turtlebot3 nav.launch

provides a minimal example of a launch file.
Once you’ve written your launch file, save it as

1 ∼/catkin_ws/src/section5/launch/my_nav.launch

2



Stanford University Principles of Robot Autonomy I - Fall 2021

Test it out by running

1 roslaunch section5 my_nav.launch

Problem 6: Describe the components included in your launch file. Did you use any of the
asl turtlebot launch files as an example? If so, what changes did you make? Include the
contents of this launch file in your submission

3


	Point to point motion around obstacles
	Running the Navigator
	Visualizing the goal position
	Custom Launch Files

