10
Image Processing

The previous chapters focused on using camera models to identify the relation-
ship between points in a 3D scene and their projections onto the camera image,
as well as how to leverage those models to reconstruct 3D scene structure from
2D images. Alternatively, this chapter begins to look at methods for extracting
other types of information through image processing, for example to answer the
question “what object am I seeing?” rather than “how far away is this object?”.
Extracting this type of visual content from raw images is important for mobile

robots to be able to intelligently interpret their surroundings. In fact, it can have

a major impact on the ability of the robot to perform several tasks including
localization and mapping or decision making. This chapter focuses on some of
the more commonly used tools in image processing including image filtering,
feature detection, and feature description’ 2.

Image Processing

Image processing is a form of signal processing where the input signal is an
image (such as a photo or a video) and the output is either an image or a set
of parameters associated with the image. While a large number of image pro-
cessing techniques exist, this chapter focuses on some of the more fundamental
methods that are relevant for robotics. In particular, these methods will be re-
lated to image filtering, feature detection, and feature description3.

In the following methods, grayscale images are treated as functions I: [a,b] x
[c,d] — [0, L], where I(x,y) represents the grayscale pixel intensity at (x,y). For
a color image, I is a vector valued function with three components, one each for
the red, green, and blue color channels of the image.

10.1 Image Filtering

Image filtering is one of the principal tasks in image processing. The terminol-
ogy “filter” comes from frequency domain signal processing and refers to the
process of accepting or rejecting certain frequency components of a signal (e.g.
eliminating high-frequency noise).

*R. Siegwart, I. R. Nourbakhsh, and D.
Scaramuzza. Introduction to Autonomous
Mobile Robots. MIT Press, 2011

2H. P. Moravec. “Towards automatic
visual obstacle avoidance”. In: 5th
International Joint Conference on Artificial
Intelligence. 1977

3 The software library OpenCV
implements a number of use-
ful image filtering algorithms:
https://docs.opencv.org.

2 IMAGE PROCESSING

Perhaps the most common type of image filtering is spatial filtering. The basic
principle of spatial filtering is that a particular pixel is modified in the filtered
image based only on the pixels in the immediate spatial neighborhood (see
Figure 10.1). To be more specific, a spatial filter for an image I(x,y) consists of:

1. A neighborhood Sy of pixels around a particular point (x,y) under exami-
nation, typically rectangular.

2. A predefined operation F that is performed on the image pixels encom-
passed by the neighborhood Syy,.

Once the operation F has been applied to all pixels (x,y) in the image I a new
image I'(x,y) is defined.

Original Image Filtered Image
Figure 10.1: Illustration of the

concept of spatial filtering.

The spatial filter operates on a
neighborhood Sy, of each point
in the original image to pro-
duce a new pixel in the filtered
image.

In general filters can be linear or nonlinear, but many of the most fundamen-
tal filters are linear and can be expressed mathematically as:

N M
I'(x,y) =Fol= Z Z F(i,) I(x+1i,y+7), (10.1)
i=—N j=—M

where N and M are integers that define the width and height of a rectangular
neighborhood Sy,. Based on the size of this neighborhood, it is said that this fil-
ter is of size (2N + 1) x (2M + 1). Additionally, the filter operation F is usually
called a mask or kernel. Broadly speaking, filters expressed by (10.1) are referred
to as correlation filters.

Another type of linear filters that are commonly used are referred to as convo-
lution filters. Convolution filters are similar to correlation filters but use reverse
image indices (in fact correlation and convolution filters are identical when the
filter mask is symmetric in both the horizontal and vertical directions). In partic-
ular, these filters are expressed mathematically as:

N M
I'(x,y)=FxI= Y Y F@j)l(x—iy—j). (10.2)
i=——N j=—M

Convolution filters are associative, meaning that for two different filter masks
F and G it is true that F % (G I) = (F * G) * I. One example of how the as-
sociative property is useful is for smoothing an image before taking applying a

PRINCIPLES OF ROBOT AUTONOMY 3

differentiation filter. Suppose the mask F implemented a derivative filter and G
implemented a smoothing filter, then sequentially applying these filters would
result in F * (G = I). However, because of the associative property the masks can
be convolved together first such that only one filter needs to be applied to the
image (i.e. (F*G) *I).

Note that in both the correlation and convolution filters the boundaries of the
image need some special care because of the width and height of the mask. For
example, Figure 10.2 shows how the filtered image is smaller than the original
due to the width and height of the mask. Some possible options to handle this
include padding the image, cropping it, extending it, or wrapping it. However,
as images are generally quite large the exact approach likely won’t vary the final
result significantly.

Original Image

Filtered Image Figure 10.2: Due to the width
and height of the mask, the
filtered image may be smaller

than the original. However
this can be fixed with several
techniques, such as padding.

Example 10.1.1 (Practical Considerations for Image Filtering). Implementa-

tion of correlation and convolution filters typically leverages some additional
“tricks” to make things easier to implement. In this example two such tricks will
be introduced: zero-padding and a change in indexing.

First, to more simply accommodate varying sizes of filters (including even
and odd sized filters) the indexing is often changed such that the coordinate of
interest is associated with the top-left element in the window rather than the
center. In particular, for a correlation filter this would correspond to:

K L
I’(x,y):FoI:ZEF(x,y)I(x—i—i—l,y—i—j—l), (10.3)

i=1j=1
where K and L are integers that define the width and height of the filter and the
pixel (x,y) is at row x and column y. However, note that with this formulation
the output image I’ will be shifted up and to the left. To see this consider the
pixel at x = 1 and y = 1 in the new image I, which would correspond to the
top-left pixel I'. This new pixel value is generated by applying the filter F over
the pixels in the original image I at rows {1,...,K} and columns {1,...,L}
(which is not centered at (1,1) in the original image I). Therefore it will appear
as if the image has been shifted! But in practice this isn’t an issue as long as you
always index with respect to the top-left corner. An example of top-left indexing
is shown in Figure 10.3

4 IMAGE PROCESSING

Original Image Top-Left Indexing
| Figure 10.3: Top-left indexing

someone e is typically easier to implement
than center indexing. Notice
that when top-left indexing, it
appears as if the filtered im-
age has shifted with respect to

when center indexing is used.

Center Indexing

Zero-padding (also commonly referred to as same padding) is another simple
trick that can be used to ensure that the output filtered image I’ has the same
dimension as the input image I. In this approach the left and right boundaries
of the image are each padded by |K/2] columns of zeros, and the top and bot-
tom boundaries are padded by |L/2| rows of zeros (|- | denotes the “floor”
operation). For example the image:

1 2 3
I=14 5 6],
7 8 9
would become
000 O0O0
01230
Ipadded =10 4 5 6 0,
07 8 90
000 0O

for filters F € R33, F € R?*2,F € R and F € R3*2. When using this
padding rule with the correlation filter (10.3) and a filter F with K = 2,3

and L = 2,3, the new image I’ can be defined for values x € {1,2,3} and

y € {1,2,3}, resulting in I’ being the same dimension as the original image I.
The use of padding (along with top-left indexing) is also shown graphically in
Figure 10.4

Padded Image Filtered Image

Figure 10.4: Image padding is

= k a commonly used technique
to ensure that the size of the
filtered image is the same size
as the original.

PRINCIPLES OF ROBOT AUTONOMY

10.1.1 Moving Average Filter

The moving average filter returns the average of pixels in the mask, which
achieves a smoothing effect (i.e. removes sharp features in the image). For ex-
ample, a moving average filter with a normalized 3 x 3 mask is defined with the
operation F in (10.1) chosen as:

1 111
F=—
9 111
1 11
Note that due to symmetry of the mask, the correlation (10.1) and convolution
(10.2) filters will be identical. Additionally, the normalization is used to main-

tain the overall brightness of the image.

10.1.2 Gaussian Smoothing Filter

Gaussian smoothing filters are similar to the moving average filer, but instead of
weighting all of the pixels evenly they are weighted by the Gaussian function:

1 x? +y?
Go(x,y) = 502 &P (— 2(72y)

This function is used to obtain the mask operation F by sampling the function
about the center pixel (i.e. for the center pixel with i = j = 0 in (10.1), sample
G (0,0)). For example, for a normalized 3 x 3 mask with ¢ = 0.85 this filter is
approximately defined by:

1

1
F_E 2
1

N =N

1
2
1

Like the moving average filter, this filter mask is symmetric and therefore yields
identical results with respect to the correlation (10.1) or convolution (10.2) fil-
ters. The advantage of the Gaussian filter is that it provides more weight to the
neighboring pixels that are closer. An example of this filter is shown in Figure
10.5.

10.1.3 Separable Masks

A mask F is called separable if it can be broken down into the convolution of
two kernels F = F * F,. If a mask is separable into “smaller” masks, then it is
often cheaper to apply F; followed by F,, rather than by F directly. One special
case of this is when the mask can be represented as an outer product of two
vectors (meaning it is equivalent to the 2D convolution of those two vectors).

If the mask is of shape M x M, and the input image has size w x h, then the
computational complexity of directly performing the convolution is O(M?wh).
However, by separating the masks the computational cost is O(2Mwh), which is

5

6 IMAGE PROCESSING

linear in M rather than quadratic. As an example, consider the moving average
filter mask from before:

11 1 1
F:flllzél[lll}.
11 1 1

As another example, note that the Gaussian smoothing filter mask is also sep-
arable. To see why this is, note that the Gaussian weighting function can be
decomposed as:

1
Go(x,y) = 702 OXP (T 02

N———
S
[}
P
S
N
|
N
qm‘%
N———

[N o
2o P 202
= 8o (%) - 8o (y)-

10.1.4 Image Differentiation Filters

Taking the derivative of an image can be used to identify certain features, such
as edges. On a basic level, the derivative of an image quantifies changes in pixel
intensity in both the vertical and horizontal direction. However, since images
are represented as functions defined over a discrete domain the traditional
method for differentiating continuous functions can not be used. Instead it

is more common to just compute differences between pixels, such as using a
central difference method:

a1 I(x+1y) —I(x—1y)

o 2 (10.4)
of _ I(x,y+1)—I(x,y—1)

dy 2 '

where dI/0dx is the derivative in the horizontal direction and dI/dy is the
derivative in the vertical direction. It is of course also possible to define the
derivatives using just one side, for example g—i =I(x+1y) —I(xy).

Figure 10.5: Example of a Gaus-
sian smoothing filter, which
produces a smoothing (blur-
ring) effect on the filtered im-
age.

PRINCIPLES OF ROBOT AUTONOMY

It is also possible to differentiate an image using convolution filters. In par-
ticular, one common approach is to use a convolution filter (10.2) defined with a
mask F called a Sobel mask (also referred to as simply a Sobel operator). For the
x direction this mask is denoted as Sy and for the y direction as Sy:

1 0 -1 1 2 1
Sx=12 0 =2|, Sy=10 0 0 (10.5)
1 0 -1 -1 -2 -1

Sobel masks are similar to the central difference method but use more neighbor-
ing pixels when calculating the derivative (i.e. they also consider the rows above
and below to compute the difference). Note that Sobel masks are also separable.

10.1.5 Similarity Measures

Filtering can also be used to find similar features in different images, which can
be useful for solving the correspondence problem in stereo vision or structure-
from-motion techniques. In particular, the similarity between the pixel (x,y) in
image I; and pixel (x/,y) in image I, can be computed by:

N M
SAD= Y Y |h(x+iy+j)— b +iy +)),
i=—N j=—M
(10.6)

N M
ssD= Y Y [L(x+iy+))— LK +iy +))7
i=——N j=—M

where SAD is an acronym for “sum of absolute differences”, SSD is an acronym
for “sum of squared differences”, and N and M define the size of the window
around the pixels that is considered.

10.2 Image Feature Detection

A local feature (also sometimes referred to as interest points, interest regions,
or keypoints) in an image is a pattern that differs from its immediate neigh-
borhood in terms of intensity, color, or texture. Local features can generally be
categorized in several ways, for example whether they provide semantic con-
tent or not. For example, features that may provide semantic content include
edges or other geometric shapes (e.g. lanes of a road or blobs corresponding to
blood cells in medical images). These types of features were some of the first
for which feature detectors were proposed in the image processing literature.
Features that do not provide semantic content may also be useful, for example
in feature tracking, camera calibration, 3D reconstruction, image mosaicing,
and panorama stitching. In these cases it may be more important that the fea-
ture be able to be located accurately and robustly over time. A third category
of features are those that may not have semantic interpretations individually,
but may have meaning as a collection. For instance, a scene could be recognized

7

8 IMAGE PROCESSING

by counting the number of feature matches between the observed scene and a
query image. In this case only the number of matches is relevant and not the
location or type of feature. Applications where these types of features are im-
portant include texture analysis, scene classification, video mining, and image
retrieval.

In this section several feature detection strategies will be discussed. While
many strategies exist for different types of features, the focus here will be on
two common features that are often useful in robotics: edges and corners.

10.2.1 Edge Detection

An edge in an image is a region where there is a significant change in intensity
values along one direction, and negligible change along the orthogonal direc-
tion. In one dimension an edge corresponds to a point where there is a sharp
change in intensity, which mathematically can be thought of as a point of a
function having a large first derivative and a small second derivative. Many
edge detectors rely on this concept by differentiating images and looking for
spikes in the derivative. An edge detector can be evaluated based on several
criteria for robustness and performance, including accuracy, localization, and
single response. Good accuracy implies few false positives or negatives (missed
edges), good localization implies that the detected edge should be exactly where
the true edge is in the image, and a single response implies only one edge is
detected for each real edge. In practice, noise and discretization can make edge
detection challenging.

Most edge detection methods rely on two key steps: smoothing and dif-
ferentiation. Differentiation is performed in both the vertical and horizontal
directions to find locations in the image with high intensity gradients. However,
differentiation alone is vulnerable to false positives due to image noise, which is
why many algorithms will first smooth the image.

Edge Detection in 1D: An example of how noise can corrupt image differenti-
ation is given in Figure 10.6. Notice that in this case it is impossible to identify
the jump in the signal due to the noise levels. Smoothing filters, such as the
Gaussian smoothing filter discussed earlier, can help remedy this problem. In
particular, suppose the original signal in Figure 10.6 is defined by I(x). Then a
smoothed version can be defined by applying a smoothing convolution filter:

5(x) = go(x) * I(x),

where g, (x) represents a Gaussian smoothing filter, and then by applying the
differentiation filter:

s'(x) = 4, s(x).

dx

This process is shown in Figure 10.7. Note however that since these filters are
convolutions, the associativity property can be leveraged to actually combine

PRINCIPLES OF ROBOT AUTONOMY 9

I(z)
Figure 10.6: Differentiation of
signal (e.g. for edge detection)
with noise can be particularly
challenging, which can be ad-
dressed by first smoothing the

signal.

b

z)

Figure 10.7: Edge detection
through convolution with a
Gaussian smoothing filter, fol-
lowed by a differentiation filter.
5(z) = go(2) ¥ I(z)

ds(z)/dx

dI(x)/dz
1(

them into a single filter:

10 IMAGE PROCESSING

Edge Detection in 2D: Edge detection in a two-dimensional image is quite sim-
ilar to the example previously discussed in 1D. Let the smoothing filter be the
Gaussian smoothing filter from before, and a differentiation filter such as the
Sobel filter. The gradient of the smoothed image in both the x and y directions

can be written as:
Gox*xI| |Sx
Goy*I| |Sy|’

where [is the original image and the associativity properties of the smoothing
and differentiation convolution filters is used to define the combined filters G, x
and G- The magnitude of the gradient can then be computed by:

VS| = /S2+ 52,

which can be used to check against a predefined threshold value for edge de-

9
32 *GoxI|

VS =

9
@*GU*I

tection. To guarantee thin edges it is also possible to filter out points whose
gradient magnitude are above the threshold but are not local maxima. Examples
of this process are shown in Figures 10.8 and 10.9.

VS| >h

VS| VS| > h

Suppression

10.2.2 Corner Detection

A corner in an image is defined as an intersection of two or more edges, and
also sometimes as a point where there is a large intensity variation in every
direction. Important properties of corner detectors include repeatability and dis-
tinctiveness. Repeatability quantifies how well the same features can be found
in multiple images even under geometric and photometric transformations. Dis-
tinctiveness refers to whether the information carried by the patch surrounding

Figure 10.8: Edge detection
using the “Sobel” edge detector.

Figure 10.9: Edge detection us-
ing the “Canny” edge detector.

PRINCIPLES OF ROBOT AUTONOMY 11

the feature is distinctive, which can be used to reliably produce correspon-
dences. Both of these properties are particularly important in applications such
as panorama stitching and 3D reconstruction.

Generally corner detection can be thought of in a similar way to edge detec-
tion, except that instead of looking for change along one direction there should
be changes in all directions. One well known corner detector is known as the

Harris detector 4, which has the useful property that the detection is invari- 4+C. Harris and M. Stephens. “A com-
bined corner and edge detector”. In:

ant to rotations and linear intensity changes (i.e. geometric and photometric »
4th Alvey Vision Conference. 1988

invariance). However the Harris detector is not invariant to scale changes or
geometric affine changes, which has led to the development of scale-invariant
detectors such as the Harris-Laplacian detector or the scale-invariant feature
transform (SIFT) detector.

10.3 Image Descriptors

Image descriptors describe features so that they can be compared across images,
or used for object detection and matching. Similar to image detectors, it is also
desirable for image descriptors to be repeatable (i.e. invariant with respect to
pose, scale, illumination, etc.) and distinct. Perhaps the simplest example of a
descriptor is an n x m window of pixel intensities centered at the feature, which
can be normalized to be illumination invariant. However, such a descriptor is
not invariant to pose or scale and is not distinctive, and therefore is generally
not useful in practice. Alternative detectors/descriptors that have become popu-
lar include SIFT, SURF, FAST, BRIEF, ORB, and BRISK.

10.4 Exercises

10.4.1 Linear Filtering

Complete Problem 3: Linear Filtering located in the online repository:
https://github.com/PrinciplesofRobotAutonomy/AA274A HW3,

where you will explore the use of linear filters for image processing.

Bibliography

[1] C. Harris and M. Stephens. “A combined corner and edge detector”. In: 4th
Alvey Vision Conference. 1988.

[2] H.P. Moravec. “Towards automatic visual obstacle avoidance”. In: 5th
International Joint Conference on Artificial Intelligence. 1977.

[3] R.Siegwart, I. R. Nourbakhsh, and D. Scaramuzza. Introduction to Au-
tonomous Mobile Robots. MIT Press, 2011.

