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Introduction to Robot Sensors

The three main pillars of robotic autonomy can broadly be characterized as
perception, planning, and control (i.e. the “see, think, act” cycle). Perception
categorizes those challenges associated with a robot sensing and understanding
its environment, which are addressed by using various sensors and then extract-
ing meaningful information from their measurements. The next few chapters
will focus on the perception/sensing problem in robotics, and in particular will
introduce common sensors utilized in robotics, their key performance charac-
teristics, as well as strategies for extracting useful information from the sensor
outputs.

Introduction to Robot Sensors

Robots operate in diverse environments and often require diverse sets of sensors
to appropriately characterize them. For example, a self-driving car may utilize
cameras, stereo cameras, lidar, and radar. Additionally, sensors are also required
for characterizing the physical state of the vehicle itself, for example wheel
encoders, heading sensors, GNSS positioning sensors1, and more2. 1 Global Navigation Satellite System

2 R. Siegwart, I. R. Nourbakhsh, and D.
Scaramuzza. Introduction to Autonomous
Mobile Robots. MIT Press, 2011

7.1 Sensor Classifications

To distinguish between sensors that measure the environment and sensors that
measure quantities related the robot itself, sensors are categorized as either
proprioceptive or exteroceptive.

Definition 7.1.1 (Proprioceptive). Proprioceptive sensors measure values internal
to the robot, for example motor speed, wheel load, robot arm joint angles, and battery
voltage.

Definition 7.1.2 (Exteroceptive). Exteroceptive sensors acquire information from the
robot’s environment, for example distance measurements, light intensity, and sound
amplitude.

Generally speaking, exteroceptive sensor measurements are often more likely
to require interpretation by the robot in order to extract meaningful environ-
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mental features. In addition to characterizing what the sensor measures, it is
also useful to characterize sensors based on how they operate. In particular it is
common to characterize a sensor as either passive or active.

Definition 7.1.3 (Passive Sensor). Passive sensors measure ambient environmental
energy entering the sensor, for example thermometers and cameras.

Definition 7.1.4 (Active Sensor). Active sensors emit energy into the environment
and measure the reaction, for example ultrasonic sensors and laser rangefinders.

Classifying a sensor as active or passive is important because this property
introduces unique challenges. For example the performance of passive sensors
depend heavily on the environment, such as a camera being dependent on the
ambient lighting to get a good image.

7.2 Sensor Performance

Different types sensors also have different types of performance characteristics.
Some sensors provide extreme accuracy in well-controlled laboratory settings
but are overcome with error when subjected to real-world environmental vari-
ations. Other sensors provide narrow, high-precision data in a wide variety of
settings. In order to quantify and compare such performance characteristics it is
necessary to define relevant metrics. These metrics are generally either related
to design specifications or in situ performance (i.e. how well a sensor performs in
the real environment).

7.2.1 Design Specification Metrics

A number of performance characteristics are specifically considered when de-
signing the sensor, and are also used to quantify its overall nominal perfor-
mance capabilities.

1. Dynamic range quantifies the ratio between the lower and upper limits of the
sensor inputs under normal operation. This metric is usually expressed in
decibels (dB), which is computed as

DR = 10 log10(r) [dB],

where r is the ratio between the upper and lower limits. In addition to dy-
namic range (ratio), the actual range is also an important sensor metric. For
example, an optical rangefinder will have a minimum operating range and
can thus provide spurious data when measurements are taken with the object
closer than that minimum.

2. Resolution is the minimum difference between two values that can be de-
tected by a sensor. Usually, the lower limit of the dynamic range of a sensor
is equal to its resolution. However, this is not necessarily the case for digital
sensors.
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3. Linearity characterizes whether or not the sensor’s output depends linearly
on the input.

4. Bandwidth or frequency is used to measure the speed with which a sensor
can provide a stream of readings. This metric is usually expressed in units
of Hertz (Hz), which is measurements per second. High bandwidth sensors
are usually desired so that information can be updated at a higher rate. For
example, mobile robots may have a limit on their maximum speed based on
the bandwidth of their obstacle detection sensors.

7.2.2 In Situ Performance Metrics

Metrics related to the design specifications can be reasonably quantified in a
laboratory environment and then extrapolated to predict performance during
real-world deployment. However, a number of important sensor metrics cannot
be adequately characterized in laboratories settings since they are influenced by
complex interactions between the environment.

1. Sensitivity defines the ratio of change in the output from the sensor to a
change in the input. High sensitivity is often undesirable because any noise
to the input can be amplified, but low sensitivity might degrade the ability to
extract useful information from the sensor’s measurements. Cross-sensitivity
defines the sensitivity to environmental parameters that are unrelated to the
sensor’s target quantity. For example, a flux-gate compass can demonstrate
high sensitivity to magnetic north and is therefore useful for mobile robot
navigation. However, the compass also has high sensitivity to ferrous build-
ing materials, so much so that its cross-sensitivity often makes the sensor
useless in some indoor environments. High cross-sensitivity of a sensor is
generally undesirable, especially when it cannot be modeled.

2. Error of a sensor is defined as the difference between the sensor’s output
measurements and the true values being measured, within some specific
operating context. Given a true value v and a measured value m, the error is
defined as e := m− v.

3. Accuracy is defined as the degree of conformity between the sensor’s mea-
surement and the true value, and is often expressed as a proportion of the
true value (e.g., 97.5% accuracy). Thus small error corresponds to high accu-
racy and vice versa. For a measurement m and true value v, the accuracy is
defined as a := 1− |m− v|/v. Since obtaining the true value v can be difficult
or impossible, characterizing sensor accuracy can be challenging.

4. Precision defines the reproducibility of the sensor results. For example, a sen-
sor has high precision if multiple measurements of the same environmental
quantity are similar. It is important to note that precision is not the same as
accuracy, a highly precise sensor can still be highly inaccurate.
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7.2.3 Sensor Errors

When discussing in situ performance metrics such as accuracy and precision, it
is often important to also be able to reason about the sources of sensor errors.
In particular it is important to distinguish between two main types of error,
systematic errors and random errors.

1. Systematic errors are caused by factors or processes that can in theory be mod-
eled (i.e. they are deterministic and therefore reproducible and predictable).
Calibration error is a classic source of systematic error in sensors.

2. Random errors cannot be predicted using a sophisticated model (i.e. they are
stochastic and unpredictable). Hue instability in a color camera, spurious
rangefinding errors, and black level noise in a camera are all examples of
random errors.

In order to reliably use a sensor in practice it is useful to have a characteri-
zation of the systematic and random errors, which could allow for corrections
to make the sensor more accurate and provide information about its precision.
Quantifying the sensor error and identifying sources of error is referred to as
error analysis. Error analysis for a typical sensor might involve identifying all
of the sources of systematic errors, modeling random errors (e.g. by Gaussian
distributions), and then propagating the errors from each identified source to
determine the overall impact on the sensor output.

Unfortunately, it is typically challenging to perform a complete error analy-
sis in practice for several reasons. One of the main reasons is due to a blurring
between systematic and random errors that is the result of changes to the oper-
ating environment. For example, exteroceptive sensors on a mobile robot will
have constantly changing measurement sources as the robot moves through the
environment, and could even be influenced by the motion of the robot itself.
Therefore, an exteroceptive sensor’s error profile may be heavily dependent on
the particular environment and even the particular state of the robot! As a more
concrete example, active ranging sensors tend to have failure modes that are
triggered largely by specific relative positions of the sensor and environment
targets. For example, when oriented at specific angles to a smooth sheetrock
wall a sonar sensor will produce specular reflections that result in highly in-
accurate range measurements. During the motion of a robot, these particular
relative angles would likely occur at stochastic intervals and therefore this error
source might be considered random. Yet, if the robot were to stop at the specific
angle for inducing specular reflections, the error would be persistent and could
be modeled as a systematic error. In summary, while systematic and random
sensor errors might be well defined in controlled settings, in practical settings
characterizing error becomes a lot more challenging due to the complexity and
quantity of potential error sources.
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7.2.4 Modeling Uncertainty

If all sensor measurement errors were systematic and could be modeled then
theoretically they could be corrected for. However in practice this is not the case
and therefore some alternative representation of the sensor error is needed. In
particular, characterizing uncertainty due to random errors is typically accom-
plished by using probability distributions.

Since it is effectively impossible to know all of the sources of random error
for a sensor it is common to make assumptions about what the distribution
of the sensor error looks like. For example, it is commonly assumed that ran-
dom errors are zero-mean and symmetric, or to go slightly further that they
are Gaussian. More broadly, it is commonly assumed that the distribution is
unimodal. These assumptions are usually made because they simplify the mathe-
matical tools used for performing theoretical analyses.

However, it is also crucial to understand the limitations of these assumptions.
In fact, in many cases even the most broad assumptions (e.g. that the distribu-
tion is unimodal) can be quite wrong in practice. As an example consider the
sonar sensor once again. When ranging an object that reflects the sound signal
well, the sonar will exhibit high accuracy and the random errors will generally
be based on noise (e.g. from the timing circuitry). In this operating instance it
might be a perfectly fine assumption that the noise distribution is unimodal and
perhaps even Gaussian. However, if the sonar sensor is moving through an en-
vironment and is faced with materials that cause coherent reflection (rather than
directly returning the sound signal to the sonar sensor) then overestimates of
the distance to the object are likely. In this case, the error will be biased toward
positive measurement error and will be far from the correct value. Therefore
it can be seen that modeling the sonar sensor uncertainty over all operating
regimes of the robot would at least require a bimodal distribution in this case.
Additionally, since overestimation is more common than underestimation, the
distribution should also be asymmetric. As a second example, consider ranging
via stereo vision. Once again, at least two modes of operation can be identified.
If the stereo vision system correctly correlates two images, then the resulting
random error will be caused by camera noise and will limit the measurement
accuracy. But the stereo vision system can also correlate two images incorrectly.
In such a case stereo vision will exhibit gross measurement error, and one can
easily imagine such behavior violating both the unimodal and the symmetric
assumptions.

7.3 Common Sensors on Mobile Robots

7.3.1 Encoders

Encoders are electro-mechanical devices that convert motion into a sequence
of digital pulses, which can then be converted to relative or absolute position
measurements. These sensors are commonly used for wheel/motor sensing
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to determine rotation angle and rotation rate. Since these sensors have vast
applications outside of mobile robotics there has been substantial development
in low-cost encoders that offer excellent resolution. In mobile robotics, encoders
are one of the most popular means to control the position or speed of wheels
and other motor-driven joints. These sensors are proprioceptive and therefore
their estimates are expressed in the reference frame of the robot.

Figure 7.1: Quadrature optical
wheel encoder. (Figure from
Siegwart et al.)

Optical encoders shine light onto a photodiode through slits in a metal or
glass disc, and measure the sine or square wave pulses that result from disk
rotation (see Figure 7.1). After some signal processing it is possible to integrate
the number of wave peaks to determine how much the disk has rotated. En-
coder resolution is measured in cycles per revolution (CPR) and the minimum
angular resolution can be readily computed from an encoder’s CPR rating. A
typical encoder in mobile robotics may have 2000 CPR, while the optical en-
coder industry can readily manufacture encoders with 10,000 CPR. In terms of
bandwidth, it is of course critical that the encoder is sufficiently fast to handle
the expected shaft rotation rates. Luckily, industrial optical encoders present no
bandwidth limitation to mobile robot applications. Usually in mobile robotics
the quadrature encoder is used. In this case, a second illumination and detec-
tor pair is placed 90 degrees shifted with respect to the original in terms of the
rotor disc. The resulting twin square waves, shown in Figure 7.1, provide signif-
icantly more information. The ordering of which square wave produces a rising
edge first identifies the direction of rotation. Furthermore, the resolution is im-
proved by a factor of four with no change to the rotor disc. Thus, a 2000 CPR
encoder in quadrature yields 8000 counts.

As with most proprioceptive sensors, encoders typically operate in a very
predictable and controlled environment. Therefore systematic errors and cross-
sensitivities can be accounted for. In practice, the accuracy of optical encoders
is often assumed to be 100% since any encoder errors are dwarfed by errors in
downstream components.

7.3.2 Heading Sensors

Heading sensors can be proprioceptive (e.g. gyroscopes, inclinometers) or exte-
roceptive (e.g. compasses). They are used to determine the robot’s orientation in
space. Additionally, they can also be used to obtain position estimates by fusing
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the orientation and velocity information and integrating, a process known as
dead reckoning.

Compasses: Compasses are exteroceptive sensors that measure the earth’s mag-
netic field to provide a rough estimate of direction. In mobile robotics, digital
compasses using the Hall effect are popular and they are inexpensive but often
suffer from poor resolution and accuracy. Flux gate compasses have improved
resolution and accuracy, but are more expensive and physically larger. Both
compass types are vulnerable to vibrations and disturbances in the magnetic
field, and are therefore less well suited for indoor applications.

Gyroscopes: Gyroscopes are heading sensors that preserve their orientation
with respect to a fixed inertial reference frame. Gyroscopes can be classified in
two categories: mechanical gyroscopes and optical gyroscopes. Mechanical gyro-

Figure 7.2: Two-axis mechan-
ical gyroscope. (Figure from
Siegwart et al.)

scopes rely on the angular momentum of a fast-spinning rotor to keep the axis
of rotation inertially stable. Generally the inertial stability increases with the
spinning speed ω, the precession speed Ω, and the wheel’s inertia I since the
reactive torque τ can be expressed as:

τ = IωΩ.

Mechanical gyroscopes are configured with an inner and outer gimbal as seen
in Figure 7.2 such that no torque can be transmitted from the outer pivot to
the wheel axis. This means that the spinning axis will therefore be space-stable
(i.e. fixed in an inertial reference frame). Nevertheless, friction in the bearings
of the gimbals may introduce small torques, which over time introduces small
errors. A high quality mechanical gyroscope can cost up to $100,000 and has an
angular drift of about 0.1 degrees in 6 hours.

Optical gyroscopes are a relatively new invention. They use angular speed
sensors with two monochromatic light beams, or lasers, emitted from the same
source. Two beams are sent, one clockwise and the other counterclockwise,
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through an optical fiber. Since the laser traveling in the direction of rotation has
a slightly shorter path, it will have a higher frequency. This frequency difference
δ f is proportional to the angular velocity, which can therefore be estimated.
In modern optical gyroscopes, bandwidth can easily exceed 100 kHz, while
resolution can be smaller than 0.0001 degrees/hr.

7.3.3 Accelerometer

An accelerometer is a device used to measure net accelerations (i.e. the net ex-
ternal forces acting on the sensor, including gravity). Mechanical accelerometers
are essentially spring-mass-damper systems that can be represented by the sec-
ond order differential equation3: 3 G. Dudek and M. Jenkin. “Inertial

Sensors, GPS, and Odometry”. In:
Springer Handbook of Robotics. Springer,
2008, pp. 477–490

Fapplied = mẍ + cẋ + kx

where m is the proof mass, c is the damping coefficient, k is the spring constant,
and x is the relative position to a reference equilibrium. When a static force is
applied, the system will oscillate until it reaches a steady state where the steady
state acceleration would be given as:

aapplied =
kx
m

.

The design of the sensor chooses m, c, and k such that system can stabilize
quickly and then the applied acceleration can be calculated from steady state.
Modern accelerometers, such as the ones in mobile phones, are usually very
small and use Micro Electro-Mechanical Systems (MEMS), which consist of a
cantilevered beam and a proof mass. The deflection of the proof mass from its
neutral position is measured using capacitive or piezoelectric effects.

7.3.4 Inertial Measurement Unit (IMU)

Inertial measurement units (IMU) are devices that use gyroscopes and ac-
celerometers to estimate their relative position, orientation, velocity, and ac-
celeration with respect to an inertial reference frame. Their general working
principle is shown in Figure 7.3.

The gyroscope data is integrated to estimate the vehicle orientation while the
three accelerometers are used to estimate the instantaneous acceleration of the
vehicle. The acceleration is then transformed to the local navigation frame by
means of the current estimate of the vehicle orientation relative to gravity. At
this point the gravity vector can be subtracted from the measurement. The re-
sulting acceleration is then integrated to obtain the velocity and then integrated
again to obtain the position, provided that both the initial velocity and position
are a priori known. To overcome the need of knowing of the initial velocity, the
integration is typically started at rest when the velocity is zero.

One of the fundamental issues with IMUs is the phenomenon called drift,
which describes the slow accumulation of errors over time. Drift in any one
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component will also effect the downstream components as well. For example,
drift in the gyroscope unavoidably undermines the estimation of the vehicle ori-
entation relative to gravity, which results in incorrect cancellation of the gravity
vector. Additionally, errors in acceleration measurements will cause the inte-
grated velocity to drift in time (which will in turn also cause position estimate
drift). To account for drift periodic references to some external measurement is
required. In many robot applications, such an external reference may come from
GNSS position measurements, cameras, or other sensors.

Figure 7.3: Inertial measure-
ment unit (IMU) block diagram.

7.3.5 Beacons

Beacons are signaling devices with precisely known positions (e.g. stars and
lighthouses are classic examples). Position of a mobile robot can be determined
by knowing the position of the beacon and by having access to relative position
measurements. The GNSS positioning system and camera-based motion capture
system for indoor use are more advanced examples. GNSS based positioning is
extremely popular in robotics, and works by processing synchronized signals
from at least four satellites. Signals from four satellites are needed (at a mini-
mum) to enable the estimation of four unknown quantities (the three position
coordinates plus a clock correction). Modified GNSS-based methods, such as
differential GPS, can be used to increase positioning accuracy.

7.3.6 Active Ranging

Active ranging sensors provide direct measurements of distance to objects in
the vicinity of the sensor. These sensors are important in robotics for both lo-
calization and environment reconstruction. There are two main types of active
ranging sensors: time-of-flight active ranging sensors (e.g. ultrasonic, laser
rangefinder, and time-of-flight cameras) and geometric active ranging sensors
(e.g. based on optical triangulation and structured light).

Figure 7.4: The Velodyne HDL-
64E High Definition Real-Time
3D Lidar sensor, a time-of-flight
active ranging sensor. (Image
retrieved from velodyneli-
dar.com)

Time-of-flight Active Ranging: Time-of-flight active ranging sensors make use
of the propagation speed of sounds or electromagnetic waves. In particular, the
travel distance is given by

d = ct,
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where d is the distance traveled, c is the speed of wave propagation, and t is
the time of flight. The propagation speed c of sound is approximately 0.3m/ms
whereas the speed of electromagnetic signals is 0.3m/ns, which is 1 million
times faster! The time of flight for a distance of 3 meters is 10 milliseconds for
an ultrasonic system, but only 10 nanoseconds for a laser rangefinder, which
makes measuring the time of flight t for electromagnetic signals more techno-
logically challenging. This explains why laser range sensors have only recently
become affordable and robust for use on mobile robots. The quality of different
time-of-flight range sensors may depend on:

1. uncertainties in determining the exact time of arrival of the reflected signal,

2. inaccuracies in the time-of-flight measurement (particularly with laser range
sensors),

3. the dispersal cone of the transmitted beam (mainly with ultrasonic range
sensors),

4. interaction with the target (e.g. surface absorption, specular reflections),

5. variation of propagation speed,

6. the speed of the mobile robot and target (in the case of a dynamic target).

Geometric Active Ranging: Geometric active ranging sensors use geometric
properties in the measurements to establish distance readings. Generally, these
sensors project a known pattern of light and then geometric properties can be
used to analyze the reflection and estimate range via triangulation. Optical
triangulation sensors (1D) transmit a collimated (parallel rays of light) beam
toward the target and use a lens to collect reflected light and project it onto a
position-sensitive device or linear camera. Structured light sensors (2D or 3D)
project a known light pattern (e.g. point, line, or texture) onto the environment.
The reflection is captured by a receiver and then, together with known geomet-
ric values, range is estimated via triangulation.

7.3.7 Other Sensors

Some classical examples of other sensors include radar, tactile sensors, and
vision based sensors (e.g. cameras). Radar sensors leverage the Doppler effect to
produce velocity relative velocity measurements. Tactile sensors are particularly
useful for robots that interact physically with their environment.

7.4 Computer Vision

Vision sensors have become crucial sensors for perception in the context of
robotics. This is generally due to the fact that vision provides an enormous
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amount of information about the environment and enables rich, intelligent inter-
action in dynamic environments4. The main challenges associated with vision- 4 In fact, the human eye provides

millions of bits of information per
second.

based sensing are related to processing digital images to extract salient infor-
mation like object depth, motion and object detection, color tracking, feature
detection, scene recognition, and more. The analysis and processing of images
are generally referred to as computer vision and image processing. Tremendous ad-
vances and new theoretical findings in these fields over the last several decades
have led to sophisticated computer vision and image processing techniques to
be utilized in industrial and consumer applications such as photography, defect
inspection, monitoring and surveillance, video games, movies, and more. This
section introduces some fundamental concepts related to these fields, and in
particular will focus on cameras and camera models.

7.4.1 Digital Cameras

While the basic idea of a camera has existed for thousands of years, the first
clear description of one was given by Leonardo Da Vinci in 1502 and the oldest
known published drawing of a camera obscura (a dark room with a pinhole to
image a scene) was shown by Gemma Frisius in 1544. By 1685, Johann Zahn
had designed the first portable camera, and in 1822 Joseph Nicephore Niepce
took the first physical photograph.

Modern cameras consist of a sensor that captures light and converts the re-
sulting signal into a digital image. Light falling on an imaging sensor is usually
picked up by an active sensing area, integrated for the duration of the exposure
(usually expressed as the shutter speed, e.g. 1/125, 1/60, 1/30 of a second), and
then passed to a set of sense amplifiers. The two main kinds of sensors used in
digital cameras today are charge coupled devices (CCD) and complementary
metal oxide on silicon (CMOS) sensors. A CCD chip is an array of light-sensitive
picture elements (pixels), and can contain between 20,000 and several million
pixels total. Each pixel can be thought of as a light-sensitive discharging capac-
itor that is 5 to 25µm in size. While complementary metal oxide semiconductor
(CMOS) chips also consist of an array of pixels, they are quite different from
CCD chips. In particular, along the side of each pixel are several transistors spe-
cific to that pixel. CCD sensors have typically outperformed CMOS for quality
sensitive applications such as digital single-lens-reflex cameras, while CMOS
sensors are better for low-power applications. However, today CMOS sensors
are standard in most digital cameras.

7.4.2 Image Formation

Before reaching the camera’s sensor, light rays first originate from a light source.
In general the rays of light reflected by an object tend to be scattered in many
directions and may consist of different wavelengths. Averaged over time, the
emitted wavelengths and directions for a specific object can be precisely de-
scribed using object-specific probability distribution functions. In particular,
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the light reflection properties of a given object are the result of how light is re-
flected, scattered, or absorbed based on the object’s surface properties and the
wavelength of the light. For example, an object might look blue because blue
wavelengths of light are primarily scattered off the surface while other wave-
lengths are absorbed. Similarly, a black object looks black because it absorbs
most wavelengths of light, and a perfect mirror reflects all visible wavelengths.

Cameras capture images by sensing these light rays on a photoreceptive sur-
face (e.g. a CCD or a CMOS sensor). However, since light reflecting off an object
is generally scattered in many directions, simply exposing a planar photorecep-
tive surface to these reflected rays would result in many rays being captured
at each pixel. This would lead to blurry images! A solution to this issue is to
add a barrier in front of the photoreceptive surface that blocks most of these
rays, and only lets some of them pass through an aperture (see Figure 7.5). The
earliest approach to filtering light rays in this way was to have a small hole in
the barrier surface. Cameras with this type of filter were referred to as pinhole
cameras.

Figure 7.5: Light rays on a pho-
toreceptive surface referred
to as the image plane. On the
left, numerous rays being re-
flected and scattered by the
object leads to blurry images
whereas (on the right), a bar-
rier has been added so that
the scattered light rays can be
distinguished.

7.4.3 Pinhole Camera Model

A pinhole camera has no lens but rather a single very small aperture. Light
from the scene passes through this pinhole aperture and projects an inverted
image onto the image plane (see Figure 7.6). While modern cameras do not
operate in this way, the principles of the pinhole camera can be used to derive
useful mathematical models.

To develop the mathematical pinhole camera model, several useful reference
frames are defined. First, the camera reference frame is centered at a point O (see
Figure 7.6) that is at a focal length f in front of the image plane. This reference
frame with directions (i, j, k) is defined with the k axis coincident with the op-
tical axis that points toward the image plane. The coordinates of a point in the
camera frame are denoted by uppercase P = (X, Y, Z). When a ray of light
is emitted from a point P and passes through the pinhole at point O, it gets
captured on the image plane at a point p. Since these points are all collinear
it is possible to deduce the following relationships between the coordinates
P = (X, Y, Z) and p = (x, y, z):

x = λX, y = λY, z = λZ,



principles of robot autonomy 13

Figure 7.6: Pinhole camera
model. Due to the geometry of
the pinhole camera system, the
object’s image is inverted on the
image plane. In this figure, O is
the camera center, c is the im-
age center, and p the principal
point.

for some λ ∈ R. This leads to the relationship:

λ =
x
X

=
y
Y

=
z
Z

.

Further, from the geometry of the camera it can be seen that z = f where f is
the focal length, such that these expressions can be rewritten as:

x = f
X
Z

, y = f
Y
Z

. (7.1)

Therefore the position of the pixel on the image plane that captures a ray of
light from the point P can be computed.

7.4.4 Thin Lens Model

One of the main issues with having a fixed pinhole aperture is that there is a
trade-off associated with the aperture’s size. A large aperture allows a greater
number of light rays to pass through, which leads to blurring of the image.
However, a small aperture lets through fewer light rays and the resulting image
is darker. As a solution, lenses can focus light via refraction and can be used to
replace the aperture, therefore avoiding the need for these trade-offs.

A similar mathematical model to the pinhole model can be introduced for
lenses by using properties from Snell’s law. Figure 7.7 shows a diagram of the
most basic lens model, which is the thin lens model (which assumes no optical
distortion due to the curvature of the lens). Snell’s law states that rays passing
through the center of the lens are not refracted, and those that are parallel to the
optical axis are focused on the focal point labeled F′. In addition, all rays pass-
ing through P are focused by the thin lens on the point p. From the geometry of
similar triangles, a mathematical model similar to (7.1) is developed:

y
Y

=
z
Z

,
y
Y

=
z− f

f
=

z
f
− 1, (7.2)

where again the point P has coordinates (X, Y, Z), its corresponding point p on
the image plane has coordinates (x, y, z), and f is the focal length. Combining
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these two equations yields the thin lens equation:

1
z
+

1
Z

=
1
f

. (7.3)

Note that in this model for a particular focal length f , a point P is only in sharp
focus if the image plane is located a distance z from the lens. However, in prac-
tice an acceptable focus is possible withing some range of distances (called
depth of field or depth of focus). Additionally, if Z approaches infinity light
would focus a distance of f away from the lens. Therefore, this model is essen-
tially the same as a pinhole model if the lens is focused at a distance of infinity.
As can be seen, this formula can also be used to estimate the distance to an ob-
ject by knowing the focal length f and the current distance of the image plane to
the lens z. This technique is called depth from focus.

Figure 7.7: The thin lens model.
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