
6
Sampling-Based Motion Planning

The previous chapter introduced motion planning problems that are formulated
with respect to the robot’s configuration space (C-space). In particular, two
specific approaches for motion planning in C-space were discussed: grid-based
methods and combinatorial planning methods. Grid-based methods discretize
the continuous C-space into a grid, and then use graph search methods such
as A* to compute paths through the grid. Combinatorial planners compute a
roadmap that consists of a finite set of points in the C-space, but avoids the use
of a rigid grid structure. Planning with the roadmap then consists of connecting
the initial configuration and desired configuration to the roadmap, and then
performing a graph search to find a path along the roadmap.

Generally speaking, grid-based methods suffer from the rigidity of the dis-
cretization that is performed. In contrast, combinatorial planners have much
more flexibility because any configuration q can be a part of the roadmap. How-
ever, both types of planners require a complete characterization of the free con-
figuration space (e.g. points in the configuration space that don’t result in a
collision with obstacles) in advance. In this chapter, a class of motion planning
algorithms is presented which builds a roadmap that is similar to combinatorial
planners, but without requiring a full characterization of the free configura-
tion space. Instead, these algorithms build roadmaps one point at a time by
sampling a point in the configuration space, and then querying an indepen-
dent module to determine if the sample is admissible. This class of planners are
referred to as sampling-based methods1. 1 S. M. LaValle. Planning Algorithms.

Cambridge, U.K.: Cambridge Univer-
sity Press, 2006

Sampling-Based Motion Planning

In contrast to the search-based motion planners discussed in the last chapter,
sampling-based methods leverage an independent module that can be queried
to determine if a configuration is admissible. In the context of robotics, an
admissible configuration in motion planning problems is often one that is
collision-free and therefore this module is often referred to as a collision de-
tection module (or simply a collision checker). The collision detection module is
used to probe and incrementally build a roadmap in the configuration space,



2 sampling-based motion planning

rather than attempting to completely characterize the free space in advance (as
is done in combinatorial planners).

Sampling-based algorithms are a common choice for practical applications
as they are conceptually simple, flexible, relatively easy to implement, and can
be extended beyond the geometric case (i.e. they can consider differential con-
straints). The disadvantages of the approach are typically with respect to theo-
retical guarantees, for example these approaches cannot certify that a solution
doesn’t exist. In this chapter the focus will be on two popular sampling-based
methods: probabilistic roadmaps (PRM) and the rapidly-exploring random
trees (RRT) algorithm. Additional techniques such as the fast-marching tree
algorithm (FMT*), kinodynamic planning, and deterministic sampling-based
methods will also be briefly mentioned.

6.1 Probabilistic Roadmap (PRM)

It is easiest to start with the probabilistic roadmap algorithm because it is con-
ceptually quite similar to combinatorial planners from the previous section.
In particular, the PRM algorithm also generates a topological graph G called a
roadmap where the vertices are configurations q in the free part of the configu-
ration space C f ree, and edges connect the vertices (and must also entirely lie in
C f ree). Once the roadmap is generated, a motion plan can be found for a given
initial configuration qI and goal configuration qG by first connecting them to the
roadmap, and then using a graph-search algorithm (e.g. A*) to find a path along
the roadmap graph G. The difference between PRM and combinatorial planners
lies in the method in which the roadmap is generated.

The key insight of the PRM algorithm is that a complete characterization
of the free configuration space (which is computationally expensive) can be
avoided by sampling configurations q at random and then using a collision
checker to validate if q ∈ C f ree. The general outline of the algorithm follows:

1. Randomly sample n configurations qi from the configuration space.

2. Query a collision checker for each qi to determine if qi ∈ C f ree, if qi 6∈ C f ree

then it is removed from the sample set.

3. Create a graph G = (V, E) with vertices from the sampled configurations
qi ∈ C f ree. Define a radius r and create edges for every pair of vertices q and
q′ where: (i) ‖q − q′‖ ≤ r and (ii) the straight line path between q and q′ is
also collision free.

An example of the roadmap resulting from applying this algorithm is shown
in Figure 6.1. Note that using the connectivity radius r is a simple and efficient
way of connecting the sampled vertices without having a burdensome number
of edges. This is desirable because having too many edges is unnecessary, will
make the graph-search more challenging, and will require more collision checks
to be made2. On the flip side, making the radius r too small could mean not 2 Edge validation is usually performed

by densely sampling the edge and
checking for collisions at each.



principles of robot autonomy 3

Figure 6.1: Example solution
found via the PRM algorithm.
The black dots represent the
randomly sampled vertices of
the graph, and the grey lines
represent the edges created
between vertices within a pre-
defined radius r of each other.
The initial configuration qstart

and goal configuration qgoal ,
are connected through this
roadmap along the pink line,
which is found by a graph-
search algorithm.

enough connections are made.
The downside of PRM is that finding good solutions may require a large

number of samples n to sufficiently cover the configuration space. Similar to
why having too many edges is not good, having too many samples will require
a lot of queries of the collision checker, which may be costly. However, there
are some scenarios where building a roadmap that completely covers the space
C f ree is beneficial, namely in multi-query planning problems. In multi-query
problems, it is assumed that the motion planner will be called many times for
different initial qI and goal qG configurations. In this case the PRM graph can
be built once to cover C f ree, and then it can be reused as many times as needed.
In other words, the costly sampling and collision checking only needs to be
done once at the start, so it may be worth the “investment”. Note however that
this only works if the environment stays the same in between each query of the
motion planner. If the environment changes, the entire PRM roadmap would
have to be rebuilt from scratch!

6.2 Rapidly-exploring Random Trees (RRT)

In multi-query problems where the environment does not change in between
each query, the probabilistic roadmap (PRM) algorithm offers the advantage
of front-loading some work to provide efficient queries later. However, many
problems in robotics are alternatively classified as single-query problems, where
it is assumed that only a single query will be made to the motion planner. A
common single-query planning scenario arises from changing environments,
such as if there is a moving obstacle. In this case building up a roadmap over
the entire free configuration space C f ree may result in wasted effort. The RRT al-
gorithm solves this problem by incrementally sampling and building the graph,
starting at the initial configuration qI , until the goal configuration qG is reached.



4 sampling-based motion planning

Additionally, the graph is built as a tree, which is a special type of graph that
has only one path between any two vertices in the graph.

In general, the RRT algorithm begins by initializing a tree3 T = (V, E) with 3 The tree is a graph, however since it
has special structure it is denoted as T
rather than G.

a vertex at the initial configuration (i.e. V = {qI}). At each iteration the RRT
algorithm then performs the following steps:

1. Randomly sample a configuration q ∈ C.

2. Find the vertex qnear ∈ V that is closest to the sampled configuration q.

3. Compute a new configuration qnew that lies on the line connecting qnear and q
such that the entire line from qnear to qnew is contained in the free configura-
tion space C f ree.

4. Add a vertex qnew and an edge (qnear, qnew) to the tree T.

Thus after each iteration only a single point is sampled and potentially added
to the tree. Additionally, every so often the sampled point q can be set to be the
goal configuration qG. Then, if the nearest point qnear can be connected to qG

by a collision-free line the search can be terminated. Intuitively, this approach
works because of a phenomenon referred to as the Voronoi bias, which essen-
tially describes the fact that there is more “empty space” near the nodes on the
frontier of the tree. Therefore, a randomly sampled point is more likely to be
drawn in this “empty space”, causing the frontier to be extended (and therefore
driving exploration).

Note that variations on this standard algorithm exist, in particular there exist
different ways of connecting a sampled point to the existing tree. One popular
variant that modifies the way a sampled point is connected to the tree is known
as RRT* (pronounced RRT star). This modified RRT algorithm introduces a no-
tion of optimality into the planner and will in fact return an optimal solution
as the number of samples approaches infinity. Another variant of RRT is called
RRT-Connect, which simultaneously builds a tree from both the initial configu-
ration qI and the goal configuration qG and tries to connect them.

6.3 Theoretical Results for PRM and RRT

One of the main challenges of sampling-based motion planning is that it is
unclear how many samples are needed to find a solution. However, some the-
oretical guarantees can be provided regarding their asymptotic behavior (i.e.
behavior as number of samples n −→ ∞). In particular, both PRM4 and RRT

4 With a constant connectivity radius r.

are guaranteed5 to eventually find a solution if it exists 6,7. Regarding solution

5 These guarantees also require an
assumption that the configuration space
is bounded, for example if C is the
d-dimensional unit hypercube with
2 ≤ d ≤ ∞.

6 S. M. LaValle. Rapidly-Exploring
Random Trees: A New Tool for Path
Planning. 1998

7 L. E. Kavraki et al. “Probabilistic
roadmaps for path planning in high-
dimensional configuration spaces”.
In: IEEE Transactions on Robotics and
Automation 12.4 (1996), pp. 566–580

quality, it has been shown that PRM (with the appropriate choice of the radius r)
can find optimal paths as the number of samples n −→ ∞. However, RRT can be
arbitrarily bad with non-negligible probability 8. 8 S. Karaman and E. Frazzoli.

“Sampling-based Algorithms for
Optimal Motion Planning”. In: Int.
Journal of Robotics Research 30.7 (2011),
pp. 846–894



principles of robot autonomy 5

Figure 6.2: Example exploration
tree by the RRT algorithm. The
black dots represent points
sampled at each iteration of the
algorithm, which are connected
to the nearest vertex that is
currently part of the tree.

6.4 Fast Marching Tree Algorithm (FMT*)

As previously mentioned, PRM is an asymptotically optimal algorithm which
means that with enough samples it will find good paths. However, in practice
PRM with a large number of samples also requires a lot of collision checks and
is therefore costly. On the other hand, RRT is fast but in general will not find
good paths. FMT* is a an advanced sampling-based motion planning algorithm
that maintains the advantages of both of these algorithms (i.e. fast and asymp-
totically optimal) 9. 9 L. Janson et al. “Fast Marching Tree: A

Fast Marching Sampling-Based Method
for Optimal Motion Planning in Many
Dimensions”. In: Int. Journal of Robotics
Research 34.7 (2015), pp. 883–921

FMT* builds a tree structured graph in the same way RRT does (which main-
tains the efficiency of RRT), but makes connections in a way that allows for
asymptotic optimality. In particular, the technique used for making new con-
nections is referred to as dynamic programming. Dynamic programming can be
used to find the best paths with respect to a cost-of-arrival, denoted c(q), which
represents the cost to move from the initial configuration qI to the configura-
tion q. An example of a common metric is simply the Euclidean distance, which
would result in a “shortest” path. In the context of motion planning, dynamic
programming leverages Bellman’s principle of optimality, which states that the
optimal paths satisfy:

c(v) = min
u:‖u−v‖<rn

Cost(u, v) + c(u), (6.1)

where u are nodes within radius rn of node v, Cost(u, v) is the cost of an edge
between u and v, and c(u) is the cost-to-arrive at u. In words, this relationship
says that the cost-of-arrival at any configuration v on the optimal path is defined
by searching over all local neighboring configurations to find which would re-
sult in the best path. FMT* uses this principle repeatedly every time it needs
to connect a new sample to the tree. However, in practice using the condition
(6.1) is complicated by the fact that the resulting edge may result in a collision.



6 sampling-based motion planning

FMT* handles this by ignoring obstacles when using the condition (6.1) to con-
nect a new sample to the tree, and then if a collision occurs from the resulting
connection it is simply skipped and the algorithm moves on to a new sam-
ple. Therefore this application of dynamic programming is referred to as lazy
because it only checks for collisions after the fact. It turns out that this substan-
tially reduces the total amount of collision checks required, and only leads to
sub-optimality in rare cases.

Figure 6.3: Example of a step
in FMT*. Suppose the sam-
ple v has been selected to be
the next point to be added
to the tree. The candidate
costs Cost(u1, v) + c(u1) and
Cost(u2, v) + c(u2) are evalu-
ated to see which connection
would minimize cv. Suppose
u2 was selected by this criteria
(i.e. u2 satisfies (6.1)), then the
collision checker would see that
the edge (u2, v) results in a col-
lision and the sample v would
be skipped (but could be added
later).

6.5 Kinodynamic Planning

The geometric motion planning algorithms previously considered assume that
the robot does not have any constraints on its motion and only a collision-free
solution is required. This makes the planning task easier because two config-
urations q and q′ can be simply connected by the planner with a straight line.
However, robots do typically have kinematic/dynamical constraints on their
motion, and for some motion planning problems it is desirable or even nec-
essary to take those constraints into account. The problem of planning a path
through the free configuration space C f ree that satisfies a given set of differential
constraints is referred to as kinodynamic motion planning10. 10 E. Schmerling, L. Janson, and M.

Pavone. “Optimal sampling-based
motion planning under differential
constraints: the driftless case”. In: IEEE
International Conference on Robotics and
Automation. 2015, pp. 2368–2375

Similar to previous chapter, it is assumed that the robot operates in a state
space X ⊆ Rn and can apply controls u ∈ U ⊆ Rm, and that the motion
constraints are given by the differential model (i.e. from kinematic or dynamics
constraints):

ẋ = f (x, u), (6.2)

where x ∈ Rn and u ∈ Rm. Note that the state space X is not necessarily the
same as the configuration space C, but the configuration q is derivable from
the state x. As was previously mentioned, the configuration space is something
that can be chosen to capture the information that is necessary for obstacle
avoidance. However to include dynamics constraints it is required that the
motion planning now be done in the state space X.

The RRT algorithm can be extended to the kinodynamic case with relative
simplicity. In particular, a random state x is sampled from the state space X
and its nearest neighbor xnear on the current tree T is found. Instead of connect-
ing x and xnear with a straight line (which is likely not dynamically feasible), a



principles of robot autonomy 7

random control u ∈ U and random time t are sampled. Then, the state is prop-
agated forward by integrating the differential equations (6.2) with the chosen
u for a time t and initial condition xnear. The resulting state xnew is then added
to the tree if the path from xnear to xnew is collision free. This is referred to as a
forward-propagation-based approach.

Another approach to kinodynamic planning leverage steering-based algo-
rithms. In these approaches, the planner selects two points in the state space x
and x′ and then uses a steering subroutine to find a feasible trajectory to con-
nect these points. Crucially, these approaches only work well if the steering
subroutine is efficient. This approach is be particularly well suited for differential
flat systems.

(a) Reeds-Shepp car (b) Double integrator system

Figure 6.4: Results from a
kinodynamic planner called
Differential FMT* (DFMT*)
(Schmerling et al.). The figure
on the left shows the results
for a Reeds-Shepp car model,
and on the right is a double
integrator model.

6.6 Deterministic Sampling-Based Motion Planning

Probabilistic sampling-based algorithms, such as the probabilistic roadmap
(PRM) and the rapidly exploring random tree (RRT) algorithms, have been quite
successful in practice for robotic motion planning and often have nice theoret-
ical properties (e.g. in terms of probabilistic completeness or even asymptotic
optimality). Such algorithms are probabilistic because they compute a path by
connecting independently and identically distributed (i.i.d.) random points
in the configuration space. However, this randomization introduces several
challenges for practical use, including certification for safety-critical applica-
tions and the ability to use offline computation to improve real-time execution.
Hence, it is important to ask whether similar (or better) theoretical guarantees
and practical performance could be obtained by considering deterministic ap-
proaches.

An important metric for answering this question is referred to as the l2-
dispersion.

Definition 6.6.1 (l2-dispersion). For a finite set S of points contained in X ⊂ Rd, its



8 sampling-based motion planning

l2-dispersion D(S) is defined as:

D(S) := sup
x∈X

min
s∈S
‖s− x‖2. (6.3)

Intuitively, the l2-dispersion of S quantifies how well a space is covered by
the set of points in S in terms of the largest Euclidean ball that touches and con-
tains none of the points. For a fixed number of samples, a small l2-dispersion
(only a small radius ball can be fit among the points of S without touching or
containing any) means that the points are more uniformly distributed.

To create a deterministic sampling based motion planning algorithm, it is
desirable to generate a set of samples S with low-dispersion. In fact, low-
dispersion sampling sequences exist that give sets S with l2-dispersion D(S)
on the order of O(n−1/d) where d is the dimension of the space. Additionally,
for d = 2 it is possible to create sequences of points S that minimize the l2-
dispersion. Then, if the set S of n samples has l2-dispersion that satisfies

D(S) ≤ γn−1/d,

for some γ > 0, and if limn→∞ n1/drn = ∞, then the arc length of the path cn

returned will converge to the optimal path c∗ as n −→ ∞.
In summary, deterministic sampling can be used to generate motion plan-

ning algorithms. These deterministic algorithms still maintain the asymptotic
optimality guarantees that probabilistic planners do, and can even use a smaller
connection radius rn.

6.7 Exercises

All exercises for this chapter can be found in the online repository:

https://github.com/PrinciplesofRobotAutonomy/AA274A_HW2.

6.7.1 Rapidly-Exploring Random Trees

Complete Problem 2: Rapidly-Exploring Random Trees (RRT), where you will im-
plement the RRT sample-based motion planning algorithm to plan paths in
simple 2D environments. Additionally, in this problem you will start with a
simple geometric planner that does not consider robot dynamics, but will then
extend the RRT algorithm to consider a wheeled robot modeled with Dubins car
dynamics.

6.7.2 Motion Planning & Control

Complete Problem 3: Motion Planning & Control, where you will combine an A*
planner with a differential flatness-based tracking controller and a pose stabi-
lization controller to enable a unicycle robot to autonomously move through a
2D environment. Note that this problem requires exercises from previous chap-
ters to be completed first.



principles of robot autonomy 9

6.7.3 Bi-Directional Sampling-based Motion Planning

Complete Extra Problem: Bi-Directional Sampling-based Motion Planning, where
you will implement a variation of the RRT algorithm known as RRT-Connect,
which uses a bi-direction approach to building the RRT tree. This algorithm
will be implemented for both a simple geometric path planner as well as for a
Dubins car robot.





Bibliography

[1] L. Janson et al. “Fast Marching Tree: A Fast Marching Sampling-Based
Method for Optimal Motion Planning in Many Dimensions”. In: Int. Jour-
nal of Robotics Research 34.7 (2015), pp. 883–921.

[2] S. Karaman and E. Frazzoli. “Sampling-based Algorithms for Optimal
Motion Planning”. In: Int. Journal of Robotics Research 30.7 (2011), pp. 846–
894.

[3] L. E. Kavraki et al. “Probabilistic roadmaps for path planning in high-
dimensional configuration spaces”. In: IEEE Transactions on Robotics and
Automation 12.4 (1996), pp. 566–580.

[4] S. M. LaValle. Planning Algorithms. Cambridge, U.K.: Cambridge University
Press, 2006.

[5] S. M. LaValle. Rapidly-Exploring Random Trees: A New Tool for Path Planning.
1998.

[6] E. Schmerling, L. Janson, and M. Pavone. “Optimal sampling-based mo-
tion planning under differential constraints: the driftless case”. In: IEEE
International Conference on Robotics and Automation. 2015, pp. 2368–2375.


