
5
Search-Based Motion Planning

Previous chapters addressed the problem of robotic motion planning and con-
trol by leveraging techniques from control theory and optimal control. In par-
ticular, these techniques were used to generate open and closed-loop control
laws to accomplish specific tasks such as trajectory generation, trajectory track-
ing, and stabilization or regulation about a particular robot state. One common
component among all of these algorithms was the use of a model of the robot’s
kinematics or dynamics, which mathematically defines how the robot transi-
tions from state to state based on control inputs.

In this chapter yet another set of algorithms for motion planning/trajec-
tory generation is discussed1. These algorithms are particularly well suited 1 S. M. LaValle. Planning Algorithms.

Cambridge, U.K.: Cambridge Univer-
sity Press, 2006

for higher-level motion planning tasks, such as motion planning in environ-
ments with obstacles. This is accomplished by focusing on formulating the mo-
tion planning problem for a robot with respect to the robot’s configuration space
rather than the state space that was used in previous chapters. While the robot’s
configuration is derivable from its state (and still characterizes all of the robot’s
degrees of freedom), the definition of the configuration space can be useful be-
cause it can be tailored to collision avoidance tasks2. Historically speaking, these 2 In some cases the choice of configu-

ration and state may end up being the
same.

approaches were developed alongside many of the techniques from previous
chapters, and are still being researched today.

Search-Based Motion Planning

Recall the general definition of the motion planning problem:

Definition 5.0.1 (Motion planning problem). Compute a sequence of actions to
go from an initial condition to a terminal condition while respecting constraints and
possibly optimizing a cost function.

Previous chapters approached this problem by formulating mathematical
optimization problems that minimized a cost function subject to constraints
on the motion (i.e. from dynamics/kinematics, control limits, or conditions on
the robot’s state), or leveraged differential flatness properties of the model. In
these approaches, the robot’s trajectory was parameterized by its state x and the

2 search-based motion planning

corresponding control inputs u which satisfied a set of differential equations

ẋ = f (x, u).

In this chapter, the motion planning problem will instead be addressed with
respect to a configuration space (C-space). The configuration q of a robot is deriv-
able from the full dynamics state x and captures all of the degrees of freedom
of the robot (i.e. all rigid body transformations). In some cases the state and
configuration of the robot may be the same, but in other cases the definition
of the configuration can be tailored to simplify the motion planning problem.
One important example of this is for geometric path planning, where paths in the
configuration space can be planned without considering the robot kinematic/-
dynamics model.

Example 5.0.1 (Motivating Example). Consider the L-shaped robot from Figure
5.1 that lives in a 2D world with obstacles, and is trying to get from one point
to another. Additionally, suppose this robot has a state x = [x, y, θ, ẋ, ẏ, θ̇]>, and
consider a configuration space defined by q = [x, y, θ]> which fully captures
the robot’s degrees of freedom. Since the motion planning problem in this case
involves obstacle avoidance, it might be easier to just plan a sequence of config-
urations q that are collision free (as is shown in the right-side graphic of Figure
5.1).

In this case, the use of the configuration space has simplified the motion
planning problem by abstracting away the consideration of the robot’s dynam-
ics. Once the geometric path has been defined in configuration space, other
techniques (such as those discussed in previous chapters) could be used to per-
form lower-level control functions for path tracking.

Figure 5.1: Motivating exam-
ple: motion planning in a 2D
workspace with obstacles.

Additionally, it is important to note that the C-space is a subset of R3, and in
particular the C-space is R2 × S1. This subspace is special because it includes
the manifold S1, which characterizes the fact that the rotational degree of free-
dom θ satisfies θ = θ ± 2πk for all k = 1, 2, This distinction is important

principles of robot autonomy 3

to make because it endows the planner with the ability to move from one an-
gle to another in two different ways (i.e. the robot can turn left or turn right).
For example, suppose the robot in Figure 5.1 has a current heading of θ0 and
wants move to have a heading θg subject to the constraint of avoiding a C-space
obstacle (see Figure 5.2). If the equivalence between the angles 0 and 2π is not
established in the definition of the configuration space, the robot would not be
able to traverse a collision-free path to the desired heading in the configura-
tion space (see red trajectory). Instead, since the configuration space is defined
with respect to S1, the robot is able to achieve the desired heading (see green
trajectory).

Figure 5.2: Example trajectory
planning where the description
of the configuration space us-
ing the manifold S1 is crucial
to path planning. In particu-
lar, rotating clockwise leads to
collision but rotating counter-
clockwise is a feasible path.

In this chapter two types of motion planning algorithms that plan in the con-
figuration space will be discussed. The first class consists of grid-based methods,
and the second class consists of methods referred to as combinatorial planners.

5.1 Grid-based Motion Planners

Suppose the robot’s configuration q is a d dimensional vector, then the C-space
is a subset of Rd. Critically, this is a continuous space and therefore there are
an infinite number of potential configurations the robot could be in. To simplify
this problem, grid-based motion planners use a grid to discretize the C-space
into a finite number of allowable configurations. For example, in a simple C-
space in two dimensions the grid might look like that shown in Figure 5.3. In
grid-based planners, undesirable configurations are simply represented by iden-
tifying some cells of the grid to be forbidden (e.g. for obstacle avoidance). The
dynamics/kinematics of the robot are also abstracted away and it is assumed
that the robot has the ability to move freely between adjacent cells (configura-
tions). After this discretization, the resulting motion planning problem is some-
times referred to as a discrete planning problem because only a finite number of
options are available at each step, and only a finite number of configurations
are possible. The planning problem then reduces to finding a way to traverse
through the cells from the initial configuration to a desired final configuration.

Mathematically, problems of this type are commonly expressed using discrete
graphs. A graph G = (V, E), is simply defined by a set of vertices V and a set

4 search-based motion planning

Figure 5.3: Discretizing the
configuration space using a
grid.

of edges E. In the context of grid-based motion planners, each vertex v ∈ V
represents a free cell of the grid, and each edge (v, u) ∈ E corresponds to a
connection between adjacent cells. With the graph representation, the planning
problem is to find a way to traverse through the graph to reach the desired
vertex. Algorithms for solving such problems are referred to as graph search
methods.

The advantages of such approaches are that they are simple and easy to use,
and for some problems can be very fast. The disadvantages are primarily the
result of the discretization procedure. In some cases, if the resolution of the
grid is not fine enough the search algorithm may not always be able to find a
solution. Additionally, for a fixed resolution the size of the graph grows expo-
nentially with respect to the dimension of the configuration space. Therefore
this approach is generally limited to simple robots with a low-dimensional con-
figuration space.

5.1.1 Label Correcting Algorithms

Since the graph is defined by a finite number of vertices (also referred to as
nodes) and edges, it should be theoretically possible to solve a graph search
problem in finite time. However in order to achieve this in practice, several
simple “accounting” tricks need to be used to keep track of how the search has
progressed and to avoid redundant exploration. Additionally, it is desirable to
find a “best” path, and so a mechanism for keeping track of the current best
path is required during the search.

A general set of algorithms known as label correcting algorithms employ such
accounting techniques to guarantee good performance. In these algorithms, the
notion of a “best” path is logged in terms of a cost-of-arrival.

Definition 5.1.1 (Cost-of-Arrival). The cost-of-arrival associated with a vertex q with

principles of robot autonomy 5

respect to a starting vertex qI is the cost associated with taking the best known route
from qI to q along edges of the graph, and is denoted C(q).

Additionally, in a slight abuse of notation the cost from traversing an edge
from vertex q to vertex q′ is denoted as C(q, q′). To keep track of what nodes
have already been visited and which still need further exploration, label cor-
recting algorithms define a set of frontier vertices (sometimes also referred to as
alive). This allows guarantees to be made that the search algorithm will avoid re-
dundant exploration, and will terminate in finite time. It also guarantees that if
a path from the initial vertex qI to the goal vertex qG exists, that it will be found.

In general, label correcting algorithms take the following steps to find the
best path from an initial vertex qI to a desired vertex qG

3: 3 In terms of robot motion planning this
would be a search over paths through
the discretized configuration space.
Therefore the vertices of the graph
are referred to as q to better connect
this abstraction with their physical
interpretation being a particular robot
configuration q.

1. Initialize the set of frontier vertices as Q = {qI} and set C(qI) = 0. Initialize
the cost-of-arrival of all other vertices q′ as C(q′) = ∞.

2. Remove a vertex from Q and explore each of its connected vertices q′. For
each q′, determine the candidate cost-of-arrival C̃(q′) associated with moving
from q to q′ as C̃(q′) = C(q) + C(q, q′). If the candidate cost-of-arrival C̃(q′)
is lower than the current cost-of-arrival C(q′) AND is lower than the current
cost-of-arrival C(qG), then set C(q′) = C̃(q′), define q as the parent of q′, and
add q′ to the set Q if q′ is not qG.

3. Repeat step 2 until the set of frontier vertices Q is empty.

The bulk of the work is done is Step 2. In particular, for the selected q from
Q, these algorithms search its connected neighbors q′ to see if moving from q
to q′ will lead to a lower overall cost than previously found paths to q′. This is
why the algorithms are called “label correcting”, since they “correct” the cost-of-
arrival as better paths are found throughout the search process. Eventually, once
the best path from qI to q is found, q will never again be added to the set Q and
therefore the algorithm is guaranteed to eventually terminate.

Theorem 5.1.2 (Label Correcting Algorithms). If a feasible path exists from qI to qG,
then the label correcting algorithm will terminate in finite time with C(qG) equal to the
optimal cost of traversal, C∗(qG).

The primary way in which label correcting algorithms differ from each other
is in how they select the next vertex q from the set of frontier nodes Q. In fact,
the set Q is often referred to as a priority queue since the algorithm might assign
priority values to the order in which vertices are selected. Different approaches
for prioritizing include depth-first search, breadth-first search, and best-first search.

Depth-First Search Depth-first search in a directed graph expands each node
up to the deepest level of the graph, until a chosen node has no more succes-
sors. Another way to think about this in terms of the set Q is “last in/first out”,
where whenever a new vertex q is selected from Q it chooses those vertices that
were most recently added.

Figure 5.4: Depth-First Search

6 search-based motion planning

Breadth-First Search Breadth-first search begins with the start node and ex-
plores all of its neighboring nodes. Then for each of these nodes, it explores
all their unexplored neighbors and so on. In terms of Q, this is like storing the
frontier nodes as a queue with the first node added is the first node selected.

Figure 5.5: Breadth First Search

Best-First Search Also commonly known as Dijkstra’s algorithm, this approach
greedily selects vertices q from Q by looking at the current best cost-of-arrivals.
Mathematically,

q = arg min
q∈Q

C(q).

This approach is sometimes considered an “optimistic” approach since it is
essentially making the assumption that the best current action will always cor-
respond to the best overall plan. In practice this approach typically provides
a more efficient search procedure relative to depth-first or breadth-first ap-
proaches because it can account for the cost of the path, however additional
improvements can be made.

5.1.2 A* Algorithm

A* is a label correcting algorithm that is a modified version of Dijkstra’s al-
gorithm. In Dijkstra’s algorithm the goal vertex qG is not taken into account,
potentially leading to wasted effort in cases where the greedy choice makes no
progress towards the goal. This is quantified by a quantity called the cost-to-go.

Definition 5.1.3 (Cost-to-Go). The cost-to-go associated with a vertex q with respect
to a goal vertex qG is the cost associated with taking the best known route from q to qG

along edges of the graph.

In practice, the cost-to-go is not usually known, and therefore heuristics are
used to provide approximate cost-to-go values h(q). In order for the heuristic to
be useful, it must be a positive underestimate of the true cost-to-go. An example
of a heuristic h is to simply use distance to the goal.

While Djikstra’s algorithm only prioritizes a vertex q based on its cost-of-
arrival C(q), A* prioritizes based on cost-of-arrival C(q) plus an approximate
cost-to-go h(q). This provides a better estimate of the total quality of a path than
just using the cost-of-arrival alone. The A* algorithm is defined in Algorithm 1.
Note that in the case that the heuristic is chosen to be h(q) = 0 for all q then A*
is the same as Djikstra’s algorithm.

5.2 Combinatorial Motion Planning

Combinatorial approaches to motion planning find paths through the continu-
ous configuration space without resorting to discretizations like in grid-based
planners. Recall that in grid-based planners, cells in the discretized configura-
tion space that were undesirable were blocked out and simply not considered
in the resulting path search. However, in the case of combinatorial planners

principles of robot autonomy 7

Algorithm 1: A* Algorithm
Data: qI , qG, G
Result: path
C(q) = ∞, f (q) = ∞, ∀q
C(qI) = 0, f (qI) = h(qI)

Q = {qI}
while Q is not empty do

q = arg minq′∈Q f (q′)

if q = qG then
return path

Q.remove(q)
for q′ ∈ {q′ | (q, q′) ∈ E} do

C̃(q′) = C(q) + C(q, q′)
if C̃(q′) < C(q′) then

q′.parent = q
C(q′) = C̃(q′)
f (q′) = C(q′) + h(q′)
if q′ 6∈ Q then

Q.add(q′)

return failure

the structure of the free portion of the configuration space is considered in a
different way.

Figure 5.6: Free (white) and
forbidden spaces (grey and red)
of the configuration space for
a simple circular robot in a 2D
world. Note that the forbidden
space accounts for the physical
dimensions of the robot.

First, the subset of the configuration space C that is free (i.e. results in no col-
lisions) is denoted as C f ree and is called the free space (see Figures 5.6 and 5.7).
Combinatorial motion planning approaches operate by computing roadmaps
through the free space C f ree. A roadmap is a graph G where each vertex repre-
sents a point in C f ree and each edge represents a path through C f ree that con-
nects a pair of vertices. The set S is then defined for a particular roadmap graph
G as the set of all points in C f ree that are either vertices of G or lie on any edge
of G. This graph structure is similar to that used in grid-based planners, with
the important distinction that the vertices can potentially be any configuration
q ∈ C f ree while in grid-based planners the vertices are defined ahead of time by

8 search-based motion planning

Figure 5.7: Once the free
(white) and forbidden (grey
and red) configurations have
been identified, the physical
dimensions of the robot can
be ignored. This figure shows
an example of a path plan-
ning problem in C-space with
obstacles.

discretization. This distinction is very important because the flexibility of choos-
ing the vertices does not result in any loss of information! Once the roadmap
has been defined, a path can be defined by first connecting the initial configu-
ration qI and goal configuration qG to the roadmap and then solving a discrete
graph search over the roadmap graph G.

In general combinatorial planners are complete (i.e. the algorithm will either
find a solution or will correctly report that no solution exists), and can even be
optimal in some cases. However, often times in practice they are not computa-
tionally feasible to implement except in problems with low-dimensional con-
figuration spaces and/or simple geometric representations of the environment.
Additionally, it requires that the free space be completely defined in advance,
which is not necessarily a realistic requirement.

5.2.1 Cell Decomposition

One common approach for deriving the roadmap is to use cell decomposition to
decompose C f ree. Cell decomposition refers to the process of partitioning C f ree

into a finite set of regions called cells, which should generally satisfy:

• Each cell should be easy to traverse and ideally convex.

• Decomposition should be easy to compute.

• Adjacencies between cells should be straightforward to determine, in order to
build the roadmap.

Example 5.2.1 (2D Cell Decomposition). Consider a two-dimensional configura-
tion space as shown in Figure 5.8. This space is decomposed into cells that are

principles of robot autonomy 9

either lines or trapezoids by a process called vertical cell decomposition. Once
the cells have been defined, the roadmap is generated by placing a vertex in
each cell (e.g. at the centroid) as well as a vertex on each shared edge between
cells.

If the forbidden space is polygonal, cell decomposition methods work pretty
well and each cell can be made to be convex. In general, there exist several
approaches for performing cell decomposition. However, cell decomposition in
higher dimensions becomes increasingly challenging.

Figure 5.8: Example of 2D
Cell Decomposition with C f ree

colored white. A roadmap is
defined as the graph G with
vertices shown as black dots
and edges connecting them. To
solve a planning problem with
qstart and qgoal these points are
first connected to the roadmap,
and then the path is easily
defined.

5.2.2 Other Roadmaps

Other ways to define roadmaps besides using cell decomposition exist. Two
possible examples include a maximum clearance or minimum distance ap-
proach. Maximum clearance roadmaps simply try to always keep as far from
obstacles as possible, for example by following the centerline of corridors. These
roadmaps are also sometimes referred to as “generalized Voronoi diagrams”.
Minimum distance roadmaps are generally the exact opposite of maximum
clearance roadmaps in that they tend to graze the corners of the forbidden
space. In practice this is likely not desirable and therefore these approaches
are less commonly used (without modification).

5.3 Exercises

5.3.1 A* Motion Planning

Complete Problem 1: A* Motion Planning located in the online repository:

10 search-based motion planning

https://github.com/PrinciplesofRobotAutonomy/AA274A_HW2,

where you will implement the A* grid-based motion planning algorithm for
some simple 2D environments.

Bibliography

[1] S. M. LaValle. Planning Algorithms. Cambridge, U.K.: Cambridge University
Press, 2006.

