
2
Open-Loop Motion Planning & Control

The previous chapter on motion planning and control introduced techniques
for developing mathematical models to describe robot motion by analyzing its
kinematics and dynamics. These models are typically expressed in the form of
differential equations that are functions of a set of generalized coordinates/ve-
locities and inputs to the system. The next step is to discover how these models
can be leveraged for robot motion planning and control. In particular this chap-
ter and the next will focus on robot control, where the goal is to determine what
inputs to apply to the system to achieve desirable behavior. To address the robot
control problem a control law must be developed, which is a set of rules or a
mathematical function that determines what inputs should be applied to the
system at any given time.

The ecosystem of techniques for robot control is vast, and control laws can
generally be categorized in several ways. One of the most fundamental classi-
fications for a control law is if it is open-loop or closed-loop. Open-loop control
laws do not rely on observations to influence the choice of control input, while
closed-loop control laws do. As a practical example, suppose you are standing
in a room and wanted to walk to the other side and sit in a chair. For open-loop
control you might look at where the chair is relative to your current position,
think about how to walk there, and then with your eyes closed walk to the chair
and sit. Alternatively, for closed-loop control you might keep your eyes open the
whole time.

In practice, open-loop control laws suffer from robustness issues since they
do not make corrections based on real-time observations. However, open-loop
control is still an extremely important topic within the context of robotics. In
particular, suppose you are interested not just in getting your robot from one
point to another, but doing so in the best or optimal way. This problem, known
as trajectory optimization or optimal control1, can be solved to obtain an optimal 1 The terms trajectory optimization

and optimal control will often be used
interchangeably.

trajectory for the robot along with the corresponding sequence of control inputs.
In theory, applying this optimal control sequence as an open-loop control law
would then make the robot follow the optimal trajectory.

This chapter will discuss several common techniques related to optimal con-
trol and trajectory optimization, including a brief review on dynamic/kinematic

2 open-loop motion planning & control

models, the formulation of the optimal control problem, approaches for solv-
ing optimal control problems, and some other topics useful in the context of
robotics. The next chapter will then focus on the development of closed-loop
control laws, including approaches that leverage the open-loop optimal control
techniques discussed here.

Open-Loop Motion Planning & Control

This chapter and the next will focus on two of the most fundamental classifica-
tions for a control law, namely whether it is open-loop or closed-loop. In particular,
this chapter will focus on open-loop control laws that arise from the study of
optimal control and trajectory optimization problems2,3. In general, open-loop 2 D. E. Kirk. Optimal Control Theory: An

Introduction. Dover Publications, 2004

3 R. M. Murray. Optimization-Based Con-
trol. California Institute of Technology,
2009

control laws depend only on time and initial condition of the system.

Definition 2.0.1 (Open-loop control). If the control law is determined as a function
of time for a specified initial state value, i.e.,

u(t) = f (x(t0), t), (2.1)

then it is said to be in open-loop form.

2.1 Kinematic and Dynamic Models

Chapter 1 discussed techniques for deriving kinematic and dynamic models of
a robot in the form of ordinary differential equations (ODE). Such models are
extremely useful in the context of robot motion planning and control, and are
essential in the context of optimal control. For the remainder of this chapter it
will be assumed that such a model has already been identified and is expressed
in the form

ẋ(t) = a(x(t), u(t), t), (2.2)

where x ∈ Rn may be comprised of generalized coordinates ξ and velocities
ξ̇ and will be referred to as the robot’s state, u ∈ Rm is the control input, and
the function a : Rn ×Rm ×R −→ Rn defines the model. While the set of ODEs
(2.2) may have been derived by considering kinematics, dynamics, or a combina-
tion of the two, this model will be generally referred to as the robot’s dynamics
model.

For clarity, note that (2.2) is a compact expression written in vector form for
the system of n first-order differential equations

ẋ1(t) = a1(x1(t), x2(t), . . . , xn(t), u1(t), u2(t), . . . , um(t), t)

ẋ2(t) = a2(x1(t), x2(t), . . . , xn(t), u1(t), u2(t), . . . , um(t), t)
...

ẋn(t) = a1(x1(t), x2(t), . . . , xn(t), u1(t), u2(t), . . . , um(t), t),

principles of robot autonomy 3

where xi is the i-th component of the vector x and uj is the j-th component of
the vector u.

Solutions to the set of differential equations (2.2) are trajectories of the sys-
tem. Given an initial condition x(t0) and a control function u(t) defined for
t ≥ t0, any technique for solving ODEs can be applied to compute the state
trajectory x(t) for t > t0. Common numerical integration approaches for solving
the ODE system include the Runge-Kutta schemes, of which the most common
are the forward or backward Euler schemes. The forward Euler scheme approx-
imates ẋ(t) ≈ xi+1−xi

hi
with hi = ti+1 − ti and evaluates a at time ti. This leads to

the recursive update

xi+1 = xi + hia(xi, ui, ti), i = 0, 1, . . . (2.3)

where ui = u(ti) and xi = x(ti).

2.2 Optimal Control Problem

Perhaps the most common open-loop control laws used for motion planning
and control in robotics are synthesized by formulating and solving optimal
control problems. These problems are designed to answer the question: from
the current state of the robot, x(t0), what future control inputs u(t) would make
the robot follow an optimal future trajectory? In general, generating optimal
open-loop control laws require three major components:

1. A model (2.2) that describes the robot’s motion as a function of the input,
developed by analyzing the robot’s kinematics/dynamics.

2. A metric that defines the quality of a particular trajectory, known as a cost
function or a reward function4. 4 The term cost is more commonly used

in optimal control literature, while
reward is used in the reinforcement
learning literature.

3. An algorithm for searching the space of possible control inputs to find one
that corresponds to an optimal trajectory5.

5 For example, convex optimization
solvers2.2.1 Problem Formulation

In this chapter the performance metric that defines the quality of a particular
trajectory will be referred to as the cost function. The standard form for defining
the cost function in optimal control problems is

J(x(t), u(t), t) = h(x(t f), t f) +
∫ t f

t0

g(x(t), u(t), t)dt. (2.4)

where h(x(t f), t f) is referred to as a terminal cost and where the integral can be
viewed as a sum of stage costs induced along the path from times t0 to t f . In
robotics, the function J might quantify objectives such as “get from point A to
point B as quickly as possible” or “get from point A to point B while using as
little effort as possible”.

4 open-loop motion planning & control

Constraints can also be considered in the optimal control problem. In the
field of robotics it is common to consider constraints on the state and control
that are expressed compactly as

x(t) ∈ X , u(t) ∈ U , (2.5)

where X is the set of all admissible states and U is the set of all admissible control
inputs. A common way to define the sets X and U is by a set of inequalities on
x and u, respectively. For example, let’s assume the first element of x is con-
strained by x1 ≥ 0, then X = {x | x1 ≥ 0} such that any vector x with x1 ≥ 0
belongs to the set X (and is therefore admissible). Constraints are commonly used in

the context of robotics to account for
actuator limits (e.g. how fast the wheels
can turn, how much torque a motor
can produce), or constraints on the
trajectory itself (e.g. avoid collisions
with surrounding objects).

The optimal control problem is then expressed as an optimization problem
over the state trajectory x(t) and control inputs u(t) with the goal of minimizing
the cost function (2.4) while also satisfying the constraints (2.5).

Definition 2.2.1 (Optimal Control Problem). An optimal control problem seeks an
admissible control u(t) which causes the system (2.2) to follow an admissible trajec-
tory x(t) that minimizes a performance metric J(x(t), u(t), t). This problem can be
expressed as an optimization problem:

minimize
u,x

h(x(t f), t f) +
∫ t f

t0

g(x(t), u(t), t)dt,

s.t. ẋ(t) = a(x(t), u(t), t),

x(t) ∈ X , u(t) ∈ U ,

x(t0) = x0,

(2.6)

where t0 is the initial time, t f is either a fixed final time or an optimization variable, and
x0 is a known initial condition.

The solution to the optimal control problem (2.6) is an admissible and opti-
mal trajectory defined over the interval t ∈ [t0, t f], and is denoted by u∗(t) and
x∗(t).

2.2.2 Solving the Optimal Control Problem

Once the optimal control problem (2.6) has been formulated, the next step is
to find a solution. However, this can be challenging since (2.6) is an infinite-
dimensional optimization problem (because the optimization is over an infinite-
dimensional function and not a finite set of parameters). Unless an analytical
solution to the problem can be found, this problem must be transformed into a
finite dimensional problem so that it can be solved numerically on a computer.
In general, algorithms for numerically solving optimal control problems can be
classified as either direct or indirect methods.

Direct Methods: Direct methods follow a “first discretize, then optimize" ap-
proach. In the first step the problem (2.6) is converted into a finite-dimensional

principles of robot autonomy 5

problem by discretizing the functions x(t) and u(t). For example this might be
accomplished by defining the new optimization variables to be x(ti) and u(ti)

for a finite number of time points ti. This finite-dimensional optimization prob-
lem is generally referred to as a nonlinear program (NLP), which can be solved
with existing numerical algorithms6. 6 Several solvers for solving general

NLPs include IPOPT and SNOPT, and
software packages for solving optimal
control problems using the direct
method include DIDO, PROPT, and
GPOPS.

Indirect Methods: Indirect methods follow a “first optimize, then discretize"
approach. These methods first derive the necessary conditions of optimality,
which are expressed as a two-point boundary value problem. This two-point
boundary value problem is essentially a set of ODEs with boundary conditions
at two points7 that must be numerically solved. 7 This is in contrast to initial value prob-

lems, which have a single boundary
condition and can easily be numerical
integrated to find a solution.Indirect methods are less commonly used in robotics because the derivation

of the necessary conditions of optimality must be done on a case by case basis,
and can become quite challenging. They become particularly difficult to use
when constraints are imposed in the problem. In contrast, direct methods offer
much more flexibility and have been quite successful in practice.

2.3 Differential Flatness

Solving optimal control problems to compute optimal trajectories and optimal
control inputs for a system can sometimes be computationally challenging. In
fact, sometimes it is more desirable to have a computationally efficient way
of generating “good” trajectories, rather than a challenging way of generating
“optimal” ones.

For a special class of models, which are referred to as differentially flat, com-
puting “good” trajectories without having to formulate optimal control prob-
lems is quite easy. There are several models that are common in robotics that are
differentially flat, including a simple car model and quadrotor models.

Figure 2.1: Simple model for
an automobile. The state con-
sists of the (x, y) position of the
center of the rear axle and the
heading angle θ. The control
inputs are the steering angle φ

and the forward velocity.

Example 2.3.1 (Simple Car Model). Consider the car model corresponding to
Figure 2.1:

ẋ = v cos θ,

ẏ = v sin θ,

θ̇ =
v
L

tan φ,

(2.7)

where (x, y) is the position and θ is the orientation of the vehicle, v is the speed,
φ is the steering angle, and L is the length of the wheelbase. The state x is there-
fore defined as x = [x, y, θ]> and the control is defined as u = [v, φ]>.

Suppose the motion planning task is to find a control sequence u(t) that will
take the car from an initial state x0 to a final desired state x f . One option would
be to formulate an optimal control problem with constraints x(t0) = x0 and
x(t f) = x f . However, it turns out that for this model there is a simpler ap-
proach. In fact, for this model it is sufficient to specify a differentiable trajectory

6 open-loop motion planning & control

for x(t) and y(t), and the remaining state variables and control inputs can be
analytically determined!

To see why this is, consider a differentiable trajectory for for x(t) and y(t)
with derivatives ẋ(t) and ẏ(t). From the dynamics model (2.7) it can be seen
that the first two equations can be leveraged to compute θ(t):

θ = tan−1(ẏ/ẋ).

Furthermore, once θ(t) has been computed the speed is defined:

v = ẋ/ cos θ, or v = ẏ/ sin θ.

Finally, given θ(t) and v(t) it is possible to directly solve for the steering angle:

φ = tan−1(
Lθ̇

v
).

This property, that from the specification of a few variables and their deriva-
tives the remaining state and control values are defined, is known as differential
flatness.

Definition 2.3.1 (Differential Flatness). A non-linear system

ẋ(t) = a(x(t), u(t)), (2.8)

is differentially flat with flat output z if there exists a function α such that

z = α(x, u, u̇, . . . , u(p)), (2.9)

and such that the solutions to the system x(t) and u(t) can be written as functions of
the flat output z and a finite number of its derivatives:

x = β(z, ż, . . . , z(q))

u = γ(z, ż, . . . , z(q)).
(2.10)

For a differentially flat system, all of the feasible trajectories for the system
can be written as functions of a flat output z(t) and its time derivatives. Addi-
tionally, note that the number of flat outputs is always equal to the number of
system inputs. In the context of motion planning and control this is extremely
useful for trajectory design because the flat outputs can be specified and then
directly mapped to the corresponding control inputs.

2.3.1 Trajectory Design for Differentially Flat Systems

As previously mentioned, trajectory design for differentially flat systems only
requires specification of the trajectories of the flat outputs, which greatly simpli-
fies motion planning and control.

Consider a nonlinear system model of the form (2.8) that is differentially flat
with flat output z where the objective is to design a trajectory from x0 to x f over

principles of robot autonomy 7

a horizon of T seconds. First, find the boundary conditions for the flat output
z(0) and z(T) that satisfy the boundary conditions on x by noting that

x0 = β(z(0), ż(0), . . . , z(q)(0)),

x f = β(z(T), ż(T), . . . , z(q)(T)).
(2.11)

Second, compute any smooth trajectory for the flat outputs z(t) that satisfy
these boundary conditions. Third, use (2.10) to map the flat output trajectory
z(t) to the state and control trajectories x(t) and u(t).

Since the flat outputs can be specified as any smooth trajectory, a common
choice is to parameterize them using N smooth basis functions:

zj(t) =
N

∑
i=1

α
[j]
i ψi(t), (2.12)

where zj is the j-th element of z, α
[j]
i ∈ R are variables that parameterize the

trajectory and ψi(t) are the smooth basis functions. One potential choice is to
use polynomial basis functions ψ1(t) = 1, ψ2(t) = t, ψ3(t) = t2, and so on.
Another advantage of choosing this parameterization of zj(t) is that it is linear

in the variables α
[j]
i . This makes it easy to map specifications on z into values for

αi that define the trajectory. Consider differentiating (2.12) q times:

żj(t) =
N

∑
i=1

α
[j]
i ψ̇i(t),

...

z(q)j (t) =
N

∑
i=1

α
[j]
i ψ

(q)
i (t).

(2.13)

Now, from the initial and final conditions zj(0), żj(0), . . . , z(q)j (0) and zj(T), żj(T), . . . , z(q)j (T)

the coefficients α
[j]
i can be computed by solving the following linear system (as-

suming the matrix is full rank):

ψ1(0) ψ2(0) . . . ψN(0)
ψ̇1(0) ψ̇2(0) . . . ψ̇N(0)

...
...

...

ψ
(q)
1 (0) ψ

(q)
2 (0) . . . ψ

(q)
N (0)

ψ1(T) ψ2(T) . . . ψN(T)
ψ̇1(T) ψ̇2(T) . . . ψ̇N(T)

...
...

...

ψ
(q)
1 (T) ψ

(q)
2 (T) . . . ψ

(q)
N (T)




α
[j]
1

α
[j]
2
...

α
[j]
N

 =



zj(0)
żj(0)

...

z(q)j (0)

zj(T)
żj(T)

...

z(q)j (T)


. (2.14)

Once the values for α
[j]
i are known, the entire trajectory zj(t) is therefore known!

Note that this approach is not strictly limited to specifying the initial and
final conditions. It is also possible to specify other constraints on zj and its

8 open-loop motion planning & control

derivatives as long as they are equality constraints. This is accomplished by
simply adding equations corresponding to the desired constraints to the linear
system of equations (2.14). However, if too many constraints are added the
linear system (2.14) may not have a solution (i.e. the system is over-determined).
Assuming the constraints are not conflicting, this problem can typically be fixed
by adding additional basis functions.

To summarize, for differentially flat nonlinear systems, the motion planning
and control problem can be greatly simplified by planning in the flat output
space. This is possible because of nonlinear functions that allow the flat output
trajectory to be directly mapped to state and control trajectories that satisfy the
system dynamics.

2.3.2 Constraints and Time Scaling

As previously shown, some constraints (e.g. boundary conditions) can be im-
posed on the trajectory by converting them into conditions on z and its deriva-
tives, and then solving the linear system of equations (2.14). However, applying
bound constraints can be slightly more challenging since they are expressed
as inequality constraints rather than equality constraints. Nonetheless, bound
constraints are common in robotics and therefore it is important to be able to
consider them in the trajectory generation process. For example, the simple car
robot from Example 2.3.1 could have an upper bound on its speed:

|v(t)| ≤ vmax.

One technique for handling these types of constraints is to use time scaling.
The general approach to satisfy bound constraints by time scaling is:

1. Specify boundary conditions and solve the linear system of equations (2.14)
to get a candidate trajectory x(t) with control inputs u(t).

2. If the candidate trajectory violates any bound constraints, generate a new
trajectory by keeping the same geometric path but decreasing the rate at
which it moves along the path.

2.3.3 Geometric Path

A geometric path is a sequence of states for the robot that is not associated with
time. Given a candidate trajectory x(t), the geometric path can be defined by
alternatively expressing the trajectory as x(t) = x(s(t)) where s is a new “path”
parameter and s(t) is defined with s(0) = s0, s(T) = s f , and ṡ(t) > 0. A
common choice for the path parameter s is the arc length along the path. The
geometric trajectory is then written as just x(s), such that the state is now a
function of the position along the path and not time. Note that x(t) : [0, T] −→
Rn and x(s) : [s0, s f] −→ Rn are actually two different functions. In particular,
the function x(t) can be derived from x(s) by the definition of the function
s(t) : [0, T] −→ [s0, s f] and the composition x(s(t)).

principles of robot autonomy 9

2.3.4 Time Scaling

For some systems, once the geometric path x(s) has been extracted from the
candidate trajectory x(t), it is possible to arbitrarily redefine new trajectories
with different time scales by simply redefining s(t). In other words parts of the
original candidate trajectory can be sped up or slowed down as desired.

To motivate why time scaling is important we can consider a simplified prob-
lem that does not involve a dynamics model. In particular, consider a scalar
variable x ∈ R and a desired geometric path that connects x0 and x f that is
parameterized as x(s) = x0 + s(x f − x0) for s ∈ [0, 1] (note that x(0) = x0 and
x(1) = x f). By choosing how s varies in time (i.e. the function s(t)) this geo-
metric path can be transformed into many different trajectories, x(t). As a simple
choice, the function s(t) can be parameterized as the cubic polynomial:

s(t) =
3

T2 t2 − 2
T3 t3.

This specific choice ensures that s(0) = 0, s(T) = 1, and ṡ(0) = ṡ(T) = 0 such
that the trajectory will be defined over the time interval t ∈ [0, T]. Substituting
this function into x(s) then yields an expression for the trajectory x(t):

x(t) = x0 +
(3

T2 t2 − 2
T3 t3)(x f − x0).

One easy way to scale the trajectory in this case is to simply change T, with
larger values of T meaning that it will take longer for x to traverse the geometric
path from x0 to x f . In fact, the maximum velocity can also be computed as:

ẋmax =
3

2T
(x f − x0).

Therefore, not only does rescaling the trajectory by changing T make the path
traversal time change, but it can also be used to decrease quantities such as the
maximum velocity!

Time Scaling with Differential Models: Some additional considerations need to be
made when time-scaling trajectories that must also satisfy differential models.
First, note that the time derivative of the state can be rewritten by using the
chain rule:

ẋ(t) =
dx(t)

dt
=

dx(s)
ds

ds(t)
dt

.

Now consider a candidate trajectory x(t) and an associated geometric path x(s)
for some s(t) that is defined over the interval t ∈ [0, T] with s(0) = s0 and
s(T) = s f . Since x(t) is a trajectory of the dynamics (2.8), the geometric path
x(s) and time scaling law s(t) satisfy

dx(s)
ds

ds(t)
dt

= a(x(s), u(s)), (2.15)

for every point s ∈ [s0, s f].

10 open-loop motion planning & control

To design a new time scaling law s̃(t) over some potentially new time interval
t ∈ [0, T̃] where s̃(0) = s0 and s̃(T̃) = s f , it is important to note that the
dynamics equations must still be satisfied8. In other words, for every s̃ ∈ [s0, s f]: 8 The geometric path is still defined

on the interval [s0, s f] so this interval
must remain the same for any new time
scaling law, but the time interval can
change.

dx(s̃)
ds̃

˙̃s = a(x(s̃), ũ(s̃)). (2.16)

Since the geometric path is fixed, the terms dx(s̃)
ds̃ and x(s̃) are fixed. Thus a new

time scaling law s̃(t) is only admissible if a new control ũ(s̃) can also be found
that guarantees that (2.16) holds. Luckily, for some specific systems this is easy
with the appropriate choice of path parameter s.

Example 2.3.2 (Time Scaling for Simple Car Model). Consider again the sim-
ple car model (2.7) from Example 2.3.1. Suppose a candidate trajectory xc(t)
with control uc(t) has been defined by leveraging the differential flatness of the
model (i.e. setting up and solving (2.14) and then mapping the flat outputs zc(t)
into the state and control). For this system a good choice for the path parameter
is the arc-length, such that

s(t) =
∫ >

0
v(t′)dt′, ṡ(t) = v(t).

With this choice of path parameter the geometric path function xc(s), s0 =

0, and s f = Lpath are all fixed (where Lpath is the total length of the path).
Rewriting the dynamics (2.16) based on the simple car model:

dxc(s̃)
ds̃

˙̃s = v(s̃) cos θc(s̃),

dyc(s̃)
ds̃

˙̃s = v(s̃) sin θc(s̃),

dθc(s̃)
ds̃

˙̃s =
v(s̃)

L
tan φ(s̃).

Any choice of the time scaling function s̃(t) must be able to satisfy these equa-
tions, and note that the trivial choice of s̃(t) = s(t) will automatically satisfy
these equations with the candidate control inputs uc(t).

Since the choice of the path parameter yields ˙̃s = v(s̃), these equations can be
further simplified:

dxc(s̃)
ds̃

= cos θc(s̃),

dyc(s̃)
ds̃

= sin θc(s̃),

dθc(s̃)
ds̃

=
1
L

tan φ(s̃).

The first two equations are guaranteed to be satisfied for all s̃ ∈ [s0, s f] because
the original candidate trajectory satisfies the dynamics. Additionally, the third
equation is guaranteed to be satisfied by choosing φ(s̃) = φc(s̃) (i.e. using the
same steering input as with the candidate trajectory).

principles of robot autonomy 11

This is interesting because it means that the equations are all satisfied inde-
pendently of the choice of ˙̃s. Therefore, since ˙̃s = v(s̃) this means that the speed
input can be chosen arbitrarily while maintaining the same geometric path!
This is extremely useful because it means that bound constraints on the speed
|v(t)| ≤ vmax can be easily enforced.

Time Scaling with Kinematic Models: Time-scaling trajectories is much more
straightforward when kinematic models are used. Consider the case where the
model of the system is derived from k Pfaffian constraints A>(x)ẋ = 0. In this
case the kinematic model can be written in the form:

ẋ = G(x)u, (2.17)

where the columns of the matrix G(x) span the null space of the matrix A>(x).
Now again consider a path parameter s that is used to reparameterize trajecto-
ries x(t) as x(s(t)), and satisfies s(0) = s0, s(T) = s f , and ṡ(t) > 09. Rewriting 9 The condition ṡ(t) > 0 is critical

to ensure that the function s(t) is
invertible. In other words, to guarantee
that there is a one-to-one mapping
between t and s.

the time derivative of the state using the chain rule yields:

dx(s)
ds

ṡ = G(x)u(t). (2.18)

By making a substitution that u(t) = ug(s)ṡ the dynamics can be further written
as:

dx(s)
ds

= G(x)ug(s). (2.19)

The terms ug(s) are referred to as geometric controls, since they are defined only
with respect to the path parameter s. Critically, (2.19) says that once the geo-
metric controls ug(s) are defined, the entire geometric path x(s) is also defined!
The choice of the timing law s(t) can then be chosen in any manner and it will
not change the geometric path, but will change the time trajectory x(t). In par-
ticular, once the geometric control ug(s) and timing law are chosen, the actual
controls are computed simply by the previous relationship u(t) = ug(s)ṡ.

Based on this analysis, the procedure for rescaling a trajectory of a kinematic
model can be made more concrete. First, consider a given trajectory x(t) with
control u(t) defined over t ∈ [0, T] that satisfies the kinematic model (2.17). For
simplicity, consider the path parameter s to be arc-length of the trajectory such
that s(0) = 0 and s(T) = Lpath. The following steps can then be used to define
a new control input ũ(t) that will make the kinematic model follow the same
geometric path but with a different time scale:

1. Determine s(t) based on the original trajectory x(t). In other words, figure
out how far along the trajectory the system is at each time t. Then reparame-
terize the control u(t) as a function of s, u(s(t)).

2. Compute the geometric controls ug(s) = u(s(t))/ṡ(t) for each point s ∈
[s0, s f].

3. Define a new timing law s̃(t) that satisfies s̃(0) = 0 and s̃(T̃) = Lpath with
˙̃s > 0 over the interval [0, T̃].

12 open-loop motion planning & control

4. Compute the new control ũ(t) = ug(s̃(t)) ˙̃s(t) for all t ∈ [0, T̃].

Example 2.3.3 (Time Scaling for Unicycle Model). Consider the kinematic unicy-
cle model:

ẋ = v cos θ,

ẏ = v sin θ,

θ̇ = ω,

(2.20)

where (x, y) is the position and θ is the orientation, v is the speed, and ω is the
rotation rate. The state x is defined as x = [x, y, θ]> and the control is defined
as u = [v, ω]>.

To time-scale trajectories of this system, consider the use of arc-length as path
parameter:

s(t) =
∫ t

0
v(τ)dτ, ṡ(t) = v(t),

such that for a trajectory defined on the interval t ∈ [0, T] with total length Lpath,
the path parameter is defined with s(0) = 0 and s(T) = Lpath. With this choice,
the geometric controls are given by:

vg(s) =
v(s)
ṡ(t)

= 1,

ωg(s) =
ω(s)
ṡ(t)

=
ω(s)
v(s)

,

where v(s(t)) has been substituted in for ṡ(t). Therefore if a new timing law s̃(t)
is introduced this will automatically define a new velocity ṽ(s̃) at each point s̃,
which can then be used to solve for the new ω̃ inputs by:

ω̃(s̃) = ωg(s̃) ˙̃s(t) =
ω(s̃)
v(s̃)

ṽ(s̃).

Alternatively, since it is easier to work with the velocity directly rather than s̃(t),
in this case it is possible to just specify ṽ(s̃) for all s̃ ∈ [0, Lpath] and then to

compute ω̃(s̃) = ω(s̃)
v(s̃) ṽ(s̃). Then, to determine the new controls as functions of

time rather than s̃, it can be noted that

τ(s) =
∫ s

0

ds′

ṽ(s′)
,

defines a function τ(s) that maps each point s ∈ [0, Lpath] to a new time.

2.4 Exercises

2.4.1 Trajectory Generation via Differential Flatness

Complete Problem 1: Trajectory Generation via Differential Flatness located in the
online repository:

principles of robot autonomy 13

https://github.com/PrinciplesofRobotAutonomy/AA274A_HW1,

where you will use an extended unicycle model to practice generating dy-
namically feasible trajectories by levering the system’s differential flatness prop-
erty. You will also have the chance to use time scaling techniques to design
trajectories that satisfy control constraints.

Bibliography

[1] D. E. Kirk. Optimal Control Theory: An Introduction. Dover Publications,
2004.

[2] R. M. Murray. Optimization-Based Control. California Institute of Technol-
ogy, 2009.

