
24
The Robot Operating System

Introduction to the Robot Operating System (ROS)

This chapter introduces the fundamentals of the Robot Operating System
(ROS)1,2, a popular framework for creating robot software. Unlike what its 1 L. Joseph. Robot Operating System

(ROS) for Absolute Beginners: Robotics
Programming Made Easy. Apress, 2018

2 M. Quigley, B. Gerkey, and W. D.
Smart. Programming Robots with ROS:
A Practical Introduction to the Robot
Operating System. O’Reilly Media, 2015

name appears to suggest, ROS is not an operating system (OS). Rather, ROS is
a “middleware" that encompasses tools, libraries and conventions to operate
robots in a simplified and consistent manner across a wide variety of robotic
platforms. ROS is a critical tool in the field of robotics today, and is widely used
in both academia and industry.

This chapter begins by introducing specific challenges in robot program-
ming that motivates the need for a middleware such as ROS. Afterwards, a
brief history of ROS will be presented to shed some light on its development
and motivations for its important features. Next, the fundamental operating
structure of ROS will be discussed in further detail to provide insights into how
ROS is operated on real robotic platforms. Lastly, specific features and tools of
the ROS environment that greatly simplify robot software development will be
presented.

24.1 Challenges in Robot Programming

Robot programming is a subset of computer programming, but it differs greatly
from more classical software programming applications. One of the defining
characteristics of robot programming is the need to manage many different
individual hardware components that must operate in harmony (e.g. sensors
and actuators on board the robot). In other words, robot software needs to not
only run the “brain" of the robot to make decisions, but also to handle multiple
input and output devices at the same time. Therefore, the following features are
needed for robot programming:

• Multitasking: Given a number of sensors and actuators on a robot, robot soft-
ware needs to multitask and work with different input/output devices in
different threads at the same time. Each thread needs to be able to communi-

2 the robot operating system

cate with other threads to exchange data.

• Low level device control: Robot software needs to be compatible with a wide
variety of input and output devices: GPIO (general purpose input/output)
pins, USB, SPI among others. C, C++ and Python all work well with low-level
devices, so robot software needs to support either of these languages, if not
all.

• High level Object Oriented Programming (OOP): In OOP, codes are encapsu-
lated, inherited, and reused as multiple instances. Ability to reuse codes and
develop programs in independent modules makes it easy to maintain code
for complex robots.

• Availability of 3rd party libraries and community support: Ample third-party
libraries and community support not only expedite software development,
but also facilitate efficient software implementation.

24.2 Brief History of ROS

Until the advent of ROS, it was impossible for various robotics developers to
collaborate or share work among different teams, projects or platforms. In
2007, early versions of ROS started to be conceived with the Stanford AI Robot
(STAIR) project, which had the following vision:

• The new robot development environment should be free and open-source for
everyone, and need to remain so to encourage collaboration of community
members.

• The new platform should make core components of robotics – from its hard-
ware to library packages – readily available for anyone who intends to launch
a robotics project.

• The new software development platform should integrate seamlessly with
existing frameworks (OpenCV for computer vision, SLAM for localization
and mapping, Gazebo for simulation, etc).

Development of ROS started to gain traction when Scott Hassan, a software
architect and entrepreneur, and his startup Willow Garage took over the project
later that year to develop standardized robotics development platform. While
mostly self-funded by Scott Hassan himself, ROS really satiated the dire needs
for a standardized robot software development environment at the time. In
2009, ROS 0.4 was released, and a working ROS robot with a mobile manipula-
tion platform called PR2 was developed. Eleven PR2 platforms were awarded
to eleven universities across the country for further collaboration on ROS devel-
opment, and in 2010 ROS 1.0 was released. Many of the original features from
ROS 1.0 are still in use. In 2012, the Open Source Robotics Foundation (OSRF)
started to supervise the future of ROS by supporting development, distribution,

principles of robot autonomy 3

Figure 24.1: Modular software
architecture designed to handle
complexity of robot program-
ming

and adoption of open software and hardware for use in robotics research, ed-
ucation, and product development. In 2014 the first long-term support (LTS)
release, ROS Indigo Igloo, became available. Today, ROS has been around for 12

years, and the platform has become what is closest to the “industry standard" in
robotics.

24.2.1 Characteristics of ROS

Building off of the initial needs first conceived by the STAIR project and the
unique challenges persistent in robot programming, the ROS framework pro-
vides the following important capabilities:

• Modularity: ROS handles complexity of a robot through modularity: Each
robot component that performs separate functions can be developed indepen-
dently in units called nodes (Figure 24.1). Each node can share data with other
nodes, and acts as the basic building blocks of ROS. Different functional ca-
pabilities on a robot can be developed in units called packages. Each package
may contain a number of nodes that are defined from source code, configura-
tion files, and data files. These packages can be distributed and installed on
other computers.

• Message passing: ROS provides a message passing interface that allows nodes
(i.e. programs) to communicate with each other. For example, one node
might detect edges in a camera image, then send this information to an ob-
ject recognition node, which in turn can send information about detected
obstacles to a navigation module.

• Built-in algorithms: A lot of popular robotics algorithms are already built-in
and available as off-the-shelf packages: PID3, SLAM4, and path planners such 3 http://wiki.ros.org/pid

4 http://wiki.ros.org/gmapping

4 the robot operating system

Figure 24.2: The ROS publish/-
subscribe (pub/sub) model.as A* and Dijkstra5 are just a few examples. These built-in algorithms can

5 http://wiki.ros.org/global_planner

significantly reduce time needed to prototype a robot.

• Third-party libraries and community support: The ROS framework is developed
with pre-existing third-party libraries in mind, and most popular libraries
such as OpenCV for computer vision6 and PCL7 integrate simply with a 6 https://opencv.org

7 http://pointclouds.orgcouple lines of code. In addition, ROS is supported by active developers all
over the world to answer questions (ROS Answers8 or to discuss various 8 https://answers.ros.org/questions/

topics and public ROS-related news9. 9 https://discourse.ros.org

24.3 Robot Programming with ROS

Before jumping into using the functions and tools that ROS provides it is crit-
ical to understand a little more about how ROS operates. In particular, it is
important to know that ROS uses a publish/subscribe (pub/sub) structure for
communicating between different components or modules. This pub/sub struc-
ture (graphically shown in Figure 24.2) allows messages to be passed in between
components or modules through a shared virtual “chat room”. To support this
structure there are four primary components of ROS:

1. Nodes: the universal name for the individual components or modules that
need to send or receive information,

2. Messages: the object for holding information that needs communicated be-
tween nodes,

3. Topics: the virtual “chat rooms” where messages are shared,

4. Master: the “conductor” that organizes the nodes and topics.

24.3.1 Nodes

Definition 24.3.1 (Node). A node10 is a process that performs computation. Nodes 10 http://wiki.ros.org/Nodes

principles of robot autonomy 5

are combined together to communicate with one another using streaming topics, RPC
services, and the Parameter Server.

Nodes are the basic building block of ROS that enables object-oriented robot
software development. Each robot component is developed as an individual
encapsulated unit of nodes, which are later reused and inherited, and a typical
robot control system will be comprised of many nodes. The use of indepen-
dent nodes, and their ability to be reused and inherited, greatly simplifies the
complexity of the overall software stack.

For example, suppose a robot is equipped with a camera and you want to
find an object in the environment and drive to it. Examples of nodes that might
be developed for this task are: a camera node that takes the image and pre-
processes it, an edge_detection node that takes the pre-processed image data
and runs an edge detection algorithm, a path_planning node that plans a path
between two points, and so on.

At the individual level, nodes are responsible for publishing or subscribing
to certain pieces of information that are shared among all other nodes. In ROS,
the pieces of information are called “messages" and they are shared in virtual
chat rooms called “topics".

24.3.2 Messages

Definition 24.3.2 (Messages). Nodes communicate with each other by publishing
simple data structures to topics. These data structures are called messages11. 11 http://wiki.ros.org/Messages

A message is defined by field types and field names. The field type defines
the type of information the message stores and the name is how the nodes ac-
cess the information. For example, suppose a node wants to publish two inte-
gers x and y, a message definition might look like:

int32 x

int32 y

where int32 is the field type and x/y is the field name. While int32 is a prim-
itive field type, more complex field types can also be defined for specific appli-
cations. For example, suppose a sensor packet node publishes sensor data as an
array of a user-defined SensorData object. This message, called SensorPacket,
could have the following fields:

time stamp

SensorData[] sensors

uint32 length

In this case SensorData is a user-defined field type and the empty bracket [] is
appended to indicate that field is an array of SensorType objects.

More generally, field types can be either the standard primitive types (integer,
floating point, boolean, etc.), arrays of primitive types, or other user-defined
types. Messages can also include arbitrarily nested structures and arrays as well.

6 the robot operating system

Primitive message types available in ROS are listed below in Table 24.1. The first
column contains the message type, the second column contains the serialization
type of the data in the message and the third column contains the numeric type
of the message in Python.

Primitive Type Serialization Python
bool (1) unsigned 8-bit int bool
int8 signed 8-bit int int
uint8 unsigned 8-bit int int (3)
int16 signed 16-bit int int
uint16 unsigned 16-bit int int
int32 signed 32-bit int int
uint32 unsigned 32-bit int int
int64 signed 64-bit int long
uint64 unsigned 64-bit int long
float32 32-bit IEEE float float
float64 64-bit IEEE float float
string ascii string (4) str
time secs/nsecs unsigned 32-bit ints rospy.Time

Table 24.1: Built-in ROS Mes-
sages

24.3.3 Topics

Definition 24.3.3 (Topics). Topics12 are named units over which nodes exchange 12 http://wiki.ros.org/Topics

messages.

A given topic will have a specific message type associated with it, and any
node that either publishes or subscribes to the topic must be equipped to handle
that type of message. The command rostopic type <topic> can be used to
see what kind of message is associated with a particular topic. Any number of
nodes can publish or subscribe to a given topic.

Fundamentally, topics are for unidirectional, streaming communication. This
is perhaps not well suited for all types of communication, such as communica-
tion that demands a response (i.e. a service routine).

The rostopic command line tool can be used in several ways to monitor
active topics/messages. Three of the most common rostopic commands are:

• rostopic list: lists all active topics

• rostopic echo < topic >: prints messages received on topic

• rostopic hz < topic >: measures topic publishing rate

The last command is particularly useful in debugging responsiveness of an
application.

principles of robot autonomy 7

24.3.4 Master

Definition 24.3.4 (Master). The master is a process that can run on any piece of
hardware to track publishers and subscribers to topics as well as services in the ROS
system.

Master is responsible for assigning network addresses and enabling indi-
vidual ROS nodes to locate one another, even if they are running on different
computers. Once these nodes have located each other, the communication will
be peer-to-peer, i.e., the master will not send nor receive the messages.

In any given ROS system, there is exactly one master running at any time.
A unique feature of the master is that master does not need to exist within the
robot’s hardware as long as a network connection exists. The master can be
facilitated remotely, on a much larger and more powerful computer.

24.4 Writing a Simple Publisher Node and Subscriber Node

24.4.1 Publisher Node

A simple publisher node that publishes String messages ten times per second
can be implemented in Python via the following code13: 13 http://wiki.ros.org/

rospy_tutorials/Tutorials/

WritingPublisherSubscriber# ! / usr / bin / env python
import rospy

from std_msgs.msg import String

def talker():

rospy.init_node(’talker’, anonymous=True)

pub = rospy.Publisher(’chatter’, String, queue_size=10)

rate = rospy.get_param(’~rate’,1)

ros_rate = rospy.Rate(rate)

rospy.loginfo("Starting ROS node talker...")

while not rospy.is_shutdown():

msg= "Greetings humans!"

pub.publish(msg)

ros_rate.sleep()

if __name__ == ’__main__’:

try:

talker()

except rospy.ROSInterruptException:

pass

8 the robot operating system

The first line:

! / usr / bin / env python

will be included in every Python ROS Node at the top of the file. This line
makes sure your script is executed as a Python script.

Next are the statements for importing specific Python libraries:

import rospy

from std_msgs.msg import String

Note that the library rospy must be imported when writing a ROS Node. The
std_msgs.msg import enables the use of the std_msgs/String message type (a
simple string container) for publishing string messages.

Next is the definition of the ROS publisher node:

rospy.init_node(’talker’, anonymous=True)

pub = rospy.Publisher(’chatter’, String, queue_size=10)

which creates a node called “talker” and defines the talker’s interface to the rest
of ROS. In particular:

• pub = rospy.Publisher("chatter", String, queue_size=10) declares that
the node is publishing to the “chatter” topic using the String message type.
String here is actually the ROS datatype (std_msgs.msg.String), and not
Python’s String datatype. The queue_size argument limits the amount of
queued messages that are allowed, for situations where a subscriber is not
receiving the published messages fast enough.

• rospy.init_node(NAME, ...) tells rospy the name of the node. Until rospy
has this information, it cannot start communicating with the ROS Master. In
this case, your node will take on the name talker. NOTE: the name must be a
base name (i.e. it cannot contain any slashes “/”).

• anonymous=True is a flag that tells rospy to generate a unique name for the
node, since ROS requires that each node have a unique name. If a node with
the same name comes up, it bumps the previous one so that malfunctioning
nodes can easily be kicked off the network. This makes it easy to run multi-
ple talker.py nodes.

• anonymous = True is another flag that ensures that the node has a unique
name by adding random numbers to the end of NAME.

The next lines of code:

rate = rospy.get_param(’~rate’,1)

ros_rate = rospy.Rate(rate)

principles of robot autonomy 9

defines a ROS rate that can be used to time how often the node publishes. In
particular, rospy.get_param(param_name, default_value) reads a private ROS
parameter (indicated by ‘∼’) called rate. This rate value is then used to create
a Rate object ros_rate in the second line. The Rate object’s sleep() method
offers a convenient way for looping at the desired frequency. For example, if
rate is 10, ROS should go through the loop 10 times per second (as long as the
processing time does not exceed 1/10th of a second!).

The line:

rospy.loginfo("Starting ROS node talker...")

performs three functions: it causes messages to get printed to screen, to be writ-
ten to the Node’s log file, and to be written to rosout. rosout is a handy tool
for debugging that makes it possible to pull up messages using rqt_console

instead of having to find the console window with your Node’s output.

The loop:

while not rospy.is_shutdown():

msg = "Greetings humans!"

pub.publish(msg)

ros_rate.sleep()

is a fairly standard rospy construct for first checking the rospy.is_shutdown()

flag and then doing work. The is_shutdown() check is used to see if the pro-
gram should exit (e.g. if there is a Ctrl-C interrupt). In this particular example,
the “work” that is then performed inside of the loop is a call to pub.publish(msg),
which publishes a string to the “chatter” topic. The loop also calls ros_rate.sleep()

so that it sleeps just long enough to maintain the desired rate through the loop.

24.4.2 Subscriber Node

A subscriber node called listener can now be created to subscribe to the pub-
lished “chatter” topic:

!/usr/bin/env python

import rospy

from std_msgs.msg import String

def callback(msg):

rospy.loginfo("Received: %s", msg.data)

def listener():

rospy.init_node(’listener’, anonymous=True)

rospy.Subscriber("chatter", String, callback)

10 the robot operating system

rospy.spin()

if __name__ == ’__main__’:

listener()

The code for listener.py is similar to talker.py, except that a new callback-
based mechanism for subscribing to messages is introduced.

First, the lines:

rospy.init_node(’listener’, anonymous=True)

rospy.Subscriber("chatter", String, callback)

declare that the node subscribes to the “chatter” topic, which is of type std_msgs.msgs.String.
When new messages are received, the function callback is invoked with the
message as the first argument.

The line:

rospy.spin()

then simply keeps the node from exiting until the node has been shutdown.

24.4.3 Compiling and Running

Once both the talker.py and listener.py nodes are ready, the catkin build
system can be used to compile the code, and then both nodes can be run.
Specifically, this is accomplished by running the following commands:

$ cd ~/catkin_ws

$ catkin_make

$ python talker.py

$ python listener.py

24.5 Other Features in ROS Development Environment

24.5.1 Launch files

As a robot project grows in scale, the number of nodes and configuration files
grow very quickly. In practice, it could be very cumbersome to manually start
up each individual node. A launch file provides a convenient way to start up
multiple nodes and a master, as well as set up other configurations, all at the
same time.

Definition 24.5.1. Launch files are .launch files with a specific XML format that can
be placed anywhere within a package directory to initialize multiple nodes, configuration
files, and a master.

principles of robot autonomy 11

While .launch files can be placed anywhere within a package directory, it
is standard practice to create a launch folder inside the workspace directory to
organize launch files. Launch files must start and end with a pair of launch tags:
<launch> ... </launch>. To start a node using a launch file the following
syntax should be used within the launch file:

<node name="..." pkg="..." type="..."/>

In this line, pkg points to the package associated with the node that is to be
launched, type refers to the name of the node executable file, and the name of
the node can be overwritten with the name argument (this will take priority
over the name that is given to the node in the code). For example,

<node name="bar1" pkg="foo_pkg" type="bar" />

launches the bar node from the foo_pkg package with a new name, bar1. Alter-
natively,

<node name="listener1" pkg="rospy_tutorials" type="listener.py"

args="−−test" respawn="true" />

launches the listener1 node using the listener.py executable from the rospy_tutorials

package with the command-line argument -test. Additionally, if the node dies
it will automatically be respawned.

There are other attributes that can be set when starting a node. While only
args and respawn were introduced in this section, http://wiki.ros.org/
roslaunch/XML/node is a great resource for additional parameters that can be
used in the <node> tag.

24.5.2 Catkin Workspace

catkin14 is a build system that compiles ROS packages. While catkin’s work- 14 catkin refers to the tail-shaped flower
cluster on willow trees – a reference
to Willow Garage where, catkin was
created.

flow15 is very similar to CMake’s, catkin adds support for automatic ‘find

15 http://wiki.ros.org/catkin/

conceptual_overview

package’ infrastructure, for building multiple, dependent projects at the same
time, and also supports both C and Python.

When developing with ROS, catkin should be run whenever a new project
is started, or if there are any additions to packages. This is accomplished by
creating a directory called catkin_ws and then running the compile command
catkin_make in that directory:

mkdir −p ~/catkin_ws/src # builds the catkin_ws in the home dir

cd ~/catkin_ws # change current directory to catkin_ws

catkin_make # run catkin

Once the catkin workspace is compiled, it will automatically contain the files
CMakeLists.txt and package.xml. There are other sub-folders in catkin_ws as
well, as shown in Figure 24.3, which can be changed as needed.

12 the robot operating system

Figure 24.3: Components of
an example ROS package
named mypackage in a catkin

workspace.

24.5.3 Debugging

Robot programming requires a lot of debugging. There are a few ways to debug
your robot software, including (but not limited to):

• rostopic: a tool that monitors ROS topics in the command line,

• rospy.loginfo(): starts a background process that writes ROS messages to a
ROS logger, viewable through a program such as rqt_console,

• rosbag: provides a convenient way to record a number of ROS topics for
playback,

• pdb: provides a useful tool for debugging python scripts.

24.5.4 Gazebo

Gazebo16 is a popular 3D dynamic simulator with the ability to accurately and 16 http://gazebosim.org

efficiently simulate robots in complex environments (see Figure 24.4). While
similar to game engines, Gazebo offers a higher fidelity physics simulation, a
suite of sensors models, and interfaces for both users and programs. Gazebo
can be used in any stage of robot development, from testing algorithms to run-
ning regression testing in realistic scenarios. Integration of Gazebo with ROS is
possible via gazebo_ros_pkgs package.

principles of robot autonomy 13

Figure 24.4: Screenshot of a
scene in Gazebo.

Bibliography

[1] L. Joseph. Robot Operating System (ROS) for Absolute Beginners: Robotics
Programming Made Easy. Apress, 2018.

[2] M. Quigley, B. Gerkey, and W. D. Smart. Programming Robots with ROS: A
Practical Introduction to the Robot Operating System. O’Reilly Media, 2015.

