
19
Finite State Machines

So far a number of algorithms for control, trajectory optimization, motion plan-
ning, perception, and localization/state estimation have been presented. Almost
all of these instances share a common characteristic: they involve manipula-
tion or observation of continuous variables. For example, motion planning and
control algorithms manipulate the robot’s physical state (i.e. position, velocity,
orientation, configuration) which can take on a continuous range of values, and
perception and localization tasks try to take (continuously valued) information
from the environment and try to estimate the robot’s physical state.

However, for higher-level tasks it is often useful to represent the state of the
robot or environment in terms of a discrete set of variables. For example, con-
sider a robot whose task is to go from point A to point B, pick up a package,
and then deliver it to point C. While the robot’s physical (continuous) state is
crucial for tasks such as controlling the robot to drive from A to B, it is also
important to keep track of what portion of the overall plan that the robot is cur-
rently performing (is the robot currently traversing to B or C, has the package
been successfully picked up, etc.). Additionally, it might be useful to keep track
of other discrete valued states of the robot, such as if a sensor is functioning or
not, or whether or not the robot is in the presence of a human (i.e. for safety).
Similar to dynamics/kinematics models for the robot’s (continuous) physical
state, finite state machines1 are a useful framework for modeling discrete higher- 1 L. Kaelbling et al. 6.01SC: Introduction

to Electrical Engineering and Computer
Science I. MIT OpenCourseWare. 2011

level states of the robot and its environment.

Finite State Machines

Finite state machines (FSMs) define a computational modeling framework for
systems whose output depends on the entire history of their inputs, and where
the number of possible states of the system is finite. This framework has been
used in a wide variety of disciplines, including electrical engineering, linguis-
tics, computer science, philosophy, biology, and more. FSMs can also be used in
several different ways, including:



2 finite state machines

1. to specify a desired program or behavior, such as how a vending machine or
ATM should function,

2. to model behavior, for example to analyze the behavior of a control system
interacting with the environment,

3. or for predicting behavior, for example to predict what will happen in the fu-
ture given some set of inputs to the system.

Generally speaking, designing finite state machines for practical robotic sys-
tems can be extremely time consuming and challenging. In particular, choosing
the appropriate set of states for a particular problem is required to ensure that
the model is not overly complex, but the interactions and transitions between
states can also be very hard to specify and can still lead to complex models. For
example, consider the graphical representation of an example FSM for the pop-
ular open source flight software PX4 in Figure 19.1. Specifying the full behavior
of the system can lead to a complex FSM, even if there are not very many states.
In fact, this FSM is still under continuous development to improve the overall
system behavior!

Figure 19.1: A graphical rep-
resentation of a finite state
machine example for the open
source flight software PX4,
https://px4.io/. As can be
seen, even for a relatively small
number of states the FSM can
become quite complex in order
to model the full behavior of
the system. Image retrieved
from diydrones.com.

Mathematically, a finite state machine consists of:

1. a finite set of states S,

2. a set of inputs I,

3. a set of outputs O,

4. a next-state function n(it, st) −→ st+1 that maps the input it at time t and
current state st to the next state st+1,

5. an output function o(it, st) −→ ot,

6. and an initial state s0.



principles of robot autonomy 3

While FSMs can be defined through the mathematical notation above, it is often
also useful to represent them graphically to get a more intuitive understanding
of how the system will behave. In particular, the graph representation is defined
with nodes of the graph representing each state in the set S. Each (directed)
edge of the graph corresponds to a possible transition between states that is
defined by a particular input. In other words, each directed edge is associated
with a particular pair (s, i). The outputs for a particular pair (s, i) are also typi-
cally included along each directed edge. This is shown in more detail in Figure
19.2.

Figure 19.2: A graphical
representation of a finite
state machine with states
S = {s0, s1, s2}, inputs
I = {i0, i1, i2} and outputs
O = {o0, o1}. The directed
edges correspond to the next-
state functions and the output
associated with each edge is
defined by the output function.
For example, in this FSM it can
be seen that n(i1, s0) −→ s1 and
o(i1, s0) −→ o1.

Example 19.0.1 (Parking Gate Control). Consider a parking gate control finite
state machine where the goal is to raise the gate when a car arrives and then
lower the gate when the car has passed. Assume sensors are available to tell if
a car is at the gate and when the car has passed through the gate, and also the
position of the gate. The control actions the gate can take are simply raising,
lowering, or holding the gate position fixed. Technically, the position of the gate
can vary continuously between the “down” and “up” positions, and the velocity
can also vary continuously. However, in designing a finite state machine to
define the overall logic/behavior for the parking gate, a higher-level abstraction
of the set of gate states can be chosen as:

S = {down, raising, up, lowering}.

The set of inputs to the finite state machine come from the sensors, and can be
chosen as:

I = {car waiting, no car waiting, car passed, car not passed,

gate up, gate not up, gate down, gate not down}.

Finally, the output of the finite state machine (defining the actions for the gate)
are simply:

O = {lower, raise, hold}.

The next-state function then defines the desired behavior for the parking
gate. For example, suppose the current state st = down and the sensor mea-
sures that a car is waiting (it = car waiting). Then, the desired behavior is to
output the command ot = raise, and the next-state function would be:

n(car waiting, down) −→ raising.



4 finite state machines

Similarly, suppose the gate was just raised for the car to pass such that st = up,
but that the sensor is giving input it = car not passed. In this case the output
would be ot = hold, and the next-state function would be:

n(up, car not passed) −→ up.

A graphical representation of the full car parking gate FSM is given in Figure
19.3.

Figure 19.3: A graphical rep-
resentation of the finite state
machine for the parking gate
controller discussed in Example
19.0.1.

19.1 FSM Architectures

Finite state machines can become quite complex since for every new state added
it is possible to define an exponentially increasing number of new transitions.
Strategies for keeping the complexity of FSMs in check include analyzing for
(and removing) redundant states, using hierarchical FSMs, and using composi-
tions based on common patterns.

19.1.1 Reducing Number of States

There exist algorithms that can be used to identify and combine states in FSMs
that would yield the same overall behavior. In particular, two states are equiva-
lent if they have the same output and for all input combinations transition to the
same or equivalent states.

One possible algorithm for reducing states in an FSM is as follows:

1. Place all states into one set.

2. Create a single partition based on the output behavior.

3. Repeatedly partition further based on next state transitions until no further
partitions is possible.



principles of robot autonomy 5

To see this procedure in action, consider the following example:

Example 19.1.1 (FSM State Reduction). Consider a finite state machine that is
used to detect the sequences 010 or 110. The FSM is shown in Table 19.1, where
it can be seen that the states are the partial sequences S = {0, 1, 00, 01, 10, 11}
and a reset state, the inputs are I = {0, 1}, and the outputs are booleans
O = {True, False} for whether the sequence 010 or 110 has been created. For
example, it can be seen that if the current partial sequence is 01 (s4) and a 0 is
input, the next state will be the reset state and the output will be True.

State, s n(0, s) n(1, s) o(0, s) o(1, s)
Reset 0 1 False False
0 00 01 False False
1 10 11 False False
00 Reset Reset False False
01 Reset Reset True False
10 Reset Reset False False
11 Reset Reset True False

Table 19.1: Finite state machine
for a sequence detector that ac-
cepts digits 0 and 1 and outputs
True if the sequences 010 or 110

is generated.

Now, the FSM in Table 19.1 can be simplified by removing redundant states!
This is accomplished by first placing all of the states into a single set {Reset, 0, 1, 00, 01, 10, 11}
and creating a partition based on the output behavior. In particular this will
generate two sets:

{Reset, 0, 1, 00, 10} : always leads to False output,

{01, 11} : does not always lead to False output.

These sets are then further partitioned based on the next-state function until
no further partitions can be made. In the first step the set {Reset, 0, 1, 00, 10} is
partitioned into:

{Reset, 00, 10} : cannot transition to {01,11},

{0, 1} : can transition to {01,11}.

and then {Reset, 00, 10} is partitioned as:

{Reset} : can transition to {0, 1},

{00, 10} : cannot transition to {0, 1}.

Therefore, instead of the original seven states (Reset, 0, 1, 00, 01, 10, 11) there
are now only four ({01, 11}, {0, 1}, Reset, {00, 10}). An equivalent (same in-
put/output behavior) but reduced finite state machine can now be defined, and
is shown in Table 19.2.

19.1.2 Hierarchical FSMs

In some cases there might be states that are not truly equivalent, but that might
still be beneficial to group closely together. With this idea, the concepts of super-



6 finite state machines

State, s n(0, s) n(1, s) o(0, s) o(1, s)
Reset {0,1} {0,1} False False
{0,1} {00,10} {01,11} False False
{00,10} Reset Reset False False
{01,11} Reset Reset True False

Table 19.2: Reduced finite state
machine for a sequence detector
that accepts digits 0 and 1 and
outputs True if the sequences
010 or 110 is generated.

states (i.e. groups of closely related states) and generalized transitions (i.e. transi-
tions between super-states) can be useful. This idea of creating super-states is
analogous to graph clustering.

19.1.3 Compositions

Individual state machines can also be composed in a variety of ways depending
on their input/output behavior, including cascade compositions, parallel compo-
sitions, and feedback compositions. Cascade compositions combine two FSMs in
sequence where the output vocabulary of one matches the input vocabulary of
the other. The new state of the combined machine is the concatenation of the
states of the individual FSMs (see Figure 19.4). Parallel compositions run two
FSMs side by side, using the same input. Both the state and output is then the
concatenation of the two individual FSMs’ state and output. Finally, feedback
compositions use only a single FSM but only require a partial input and also
reuse the output as input (requires the input and output vocabularies to be the
same).

Figure 19.4: Cascade, parallel,
and feedback compositions of
finite state machines.

19.2 Implementation Details

There are numerous ways that finite state machines could be implemented in
practice. However, one common approach is to exploit Object Oriented Pro-
gramming (OOP) by building the finite state machine as a class. In particular,
the class would keep track of the state of the FSM in a class variable. The state
update process could then occur through the use of if/else statements in an
update class method, as well as the definition of the FSM output. An example
implementation in Python of the parking gate controller FSM from Example
19.0.1 is given below:

import rospy as rp

from std_msgs.msg import String

class ParkingGateFSM():

"""Simple FSM f o r parking gate contro l """
def __init__(self):

rp.init_node(’parking_gate’, anonymous=True)

self.state = ’down’

self.cmd = rp.Publisher(’/gate_cmd’, String)

rp.Subscriber(’/car_sensor’, String, self.car_clbk)



principles of robot autonomy 7

rp.Subscriber(’/gate_sensor’, String, self.gate_clbk)

def car_clbk(self, data):

self.car_input = data

def gate_clbk(self, data):

self.gate_input = data

def run(self):

rate = rp.Rate(10) # 10 Hz
while not rp.is_shutdown():

if self.state == ’down’:

if self.car_input == ’no_car_waiting’:

output = ’hold’

elif self.car_input == ’car_waiting’:

self.state = ’raising’

output = ’raise’

elif self.state == ’raising’:

if self.gate_input == ’gate_not_up’:

output = ’raise’

elif self.gate_input == ’gate_up’:

self.state = ’up’

output = ’hold’

elif self.state == ’up’:

if self.car_input == ’car_not_passed’:

output = ’hold’

elif self.car_input == ’car_passed’:

self.state = ’lowering’

output = ’lower’

elif self.state == ’lowering’:

if self.gate_input == ’gate_not_down’:

output = ’lower’

elif self.gate_input == ’gate_down’:

self.state = ’down’

output = ’hold’

self.cmd.publish(output)

rate.sleep()

19.3 Other Useful Tools

A useful tool for visualizing finite state machines in ROS is SMACH, which can
be though of as an analogue to RViz. More information about SMACH and how
it is used can be found on the ROS Wiki2. 2 http://wiki.ros.org/smach





Bibliography

[1] L. Kaelbling et al. 6.01SC: Introduction to Electrical Engineering and Computer
Science I. MIT OpenCourseWare. 2011.


