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Sensor Fusion

Almost every robot will rely on multiple sensors (including multiple types of
sensors) for perception and localization tasks. This allows the robot to take
advantage of the different strengths of each sensor for a more well-rounded
sensing capability. For example a self-driving car may use both laser rangefind-
ers and radar for measuring distances, since in some cases one sensor may work
better than the other. As another example, a wheeled robot may use GNSS sen-
sors as well as wheel encoders to estimate position. However, while each sensor
may provide data toward a similar goal (e.g. estimating position or orientation)
their sensing modalities may be drastically different. This chapter covers the
topic of sensor fusion1,2, and provides a discussion on algorithms for effectively 1 F. Gustafsson. Statistical Sensor Fusion.
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2 D. Simon. Optimal State Estimation:
Kalman, H∞, and Nonlinear Approaches.
John Wiley & Sons, 2006

leveraging multiple sensing modalities toward a common objective.

Sensor Fusion

Using measurements from multiple sensors (potentially different types of sen-
sors) is an effective technique for reducing the uncertainty in downstream per-
ception and estimation tasks (see Figure 18.1). This is generally the case because

Figure 18.1: Sensor fusion can
reduce uncertainty by provid-
ing more well-rounded data.
For example in this scenario the
radar sensor may have good
accuracy longitudinally but less
accuracy laterally. Contrarily, a
camera may provide poor range
estimation but good lateral
position estimation. By fusing
these two sensor measurements
the resulting estimate can be
accurate both longitudinally
and laterally.

individual sensors typically suffer from limited range, limited field of view, or
performance degradation under certain environmental conditions. Additionally,
in single-sensor systems measurement accuracy degradation and sensor failure
can be catastrophic. Alternatively, multi-sensor systems can address these chal-
lenges through redundancy of individual sensors (e.g. to provide full field of
view measurements or multiple measurements of the same quantity) or through
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sensor diversity (e.g. using sensors with different characteristics to offset limita-
tions of others).

18.1 A Taxonomy of Sensor Fusion

To put the sensor fusion problem into a broader perspective, a taxonomy of
sensor fusion related challenges will now be presented. This includes challenges
associated with both fusion algorithms as well as the measurement data.

18.1.1 Data-related Taxonomy

One of the primary challenges with data fusion is the inherent imperfection in
the measurement data, including uncertainty (i.e. resulting from sensor noise),
imprecision (i.e. resulting from sensor bias), and granularity (i.e. resulting from
sensor resolution). Other important data-related aspects to sensor fusion in-
clude data correlation, disparity, and inconsistency (e.g. data conflicts, outliers,
disorder). Broadly speaking sensor data can experience multiple types of im-
perfection at the same time, and so data fusion algorithms should be developed
with robustness in mind.

18.1.2 Fusion-related Taxonomy

At the data-fusion level, it is useful to classify the problem based on the type
of data that is being fused. Low-level fusion problems typically fuse low-level
signal data (i.e. time-series data), intermediate-level problems fuse features and
characteristics, and high-level fusion problems consider decisions. Fusion prob-
lems can also be categorized based on the relationship among different sensors
used in the fusion process. Competitive fusion problems consider redundant
sensors that directly measure the same quantity. Complementary fusion is used
when different sensors provide complementary information about the environ-
ment (e.g. lidar for short distance ranging and radar for long distance ranging).
Finally, cooperative fusion considers problems where the required information
cannot be inferred from a single sensor (e.g. GNSS localization and stereo vi-
sion can be cooperatively used because they measure fundamentally different
environmental quantities). Generally speaking competitive fusion increases re-
liability and accuracy of fused information, complementary fusion increases
the completeness of information, and cooperative fusion broadens the types of
information that can be gathered.

18.1.3 Architectural Taxonomy

Fusion algorithms can also be classified based on their type of architecture,
namely whether they are centralized, decentralized, or distributed. Centralized
architectures collect all sensor data first, and then perform computations on the
entire set of data. This approach is theoretically optimal since all information is
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gathered and operated on at once, but the need for high levels of communica-
tion and processing can be challenging in practice. Decentralized architectures
are essentially collections of centralized systems, and generally still suffer from
the same high demands for communication and processing. On the other hand,
distributed architectures do not collect all sensor information ahead of time but
rather perform computations on local sensor data first, before potentially pass-
ing information on for further fusion tasks. These architectures scale better, but
can lead to suboptimal performance because each sensor is performing local
processing (i.e. without having all information).

18.2 Bayesian Approach to Sensor Fusion

Previous chapters presented several algorithms for robot state estimation and
localization based on Bayes’ filter. In fact, these algorithms can be viewed as ap-
proaches to solve the sensor fusion problem. This section explores the Bayesian
approach to sensor fusion in more detail to show exactly how these approaches
can blend measurement data to reduce uncertainty.

Recall that the Bayesian approach is a probabilistic approach that models
unknowns as random variables and quantifies knowledge in the form of prob-
ability distributions over the unknowns. This principled approach is useful for
sensors fusion for several reasons. First, it provides a unified framework for rep-
resenting knowledge that is compatible with any quantity and type of sensors
and is interpretable. Second, probability distributions implicitly provide infor-
mation about uncertainty (e.g. the variance of a Gaussian). Third, Bayes’ rule
provides a principled approach for updating distributions. Finally, they can be
used to deal with missing information and classification of new observations.

Example 18.2.1 (Competitive Fusion Example). As an example to show how a
probabilistic approach can be used to reduce uncertainty through sensor fusion,
consider a case where two sensors are fused to estimate a single quantity x ∈ R.
Specifically, suppose the two measurements y1 and y2 are normally distributed
random variables:
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where the first sensor has a higher precision than the second sensor such that
σ2

1 < σ2
2 . Then the combined measurement probability is given by:

p(y1, y2 | x) = p(y1 | x)p(y2 | x),

by assuming conditional independence. By exploiting the product of two Gaus-
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sian property this joint probability distribution is:
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Therefore, given two measurements y1 and y2 the best estimate of the quantity x
is given by µ, which is a weighted average of the two measurements. In particu-
lar, more weight is given to the measurement with higher precision (i.e. higher
variance σ2

i ) and the overall uncertainty will decrease!

18.2.1 Kalman Filter Sensor Fusion

The Kalman filter from the previous chapter on parametric state estimation
techniques is a common tool for sensor fusion problems. Recall that the Kalman
filter assumes a linear state transition (dynamics) model:

xt = Atxt−1 + Btut + εt, (18.1)

and a linear measurement model:

zt = Ctxt + δt, (18.2)

where x is the state of the system and z are the measurements. Additionally, the
Kalman filter assumes the belief distribution of x and the noise terms ε, δ are all
Gaussian:

bel(xt) ∼ N (µt, Σt), εt ∼ N (0, Rt), δt ∼ N (0, Qt),

where Rt and Qt are the covariances of the state transition and measurement
noise models, respectively. With these assumptions the Kalman filter algorithm
uses a recursive “predict then correct” approach and the belief will always re-
main normally distributed.

This algorithm can be used for sensor fusion since the measurement vector
z can include measurements from any type of sensor, as long as a linear rela-
tionship exists between the measurement and the underlying state x that is to
be estimated. At each step of the Kalman filter algorithm, every measurement at
time t is simultaneously used to update or “correct” the state predicted from the
state transition model. Additionally, the Kalman filter takes into account the co-
variance Rt, which includes the covariance of each individual sensor. In fact, the
Kalman filter will implicitly favor measurements with lower covariance when
performing the correction step3. 3 Specifically, this occurs during the

computation of the Kalman gain.A useful trick for applying the Kalman filter to sensor fusion problems is to
also note that the state x can contain any type of information, it is not strictly
limited to the state usually associated with the robot’s dynamics or kinematics.
For example, the state could be augmented with auxiliary states such as sensor
bias or offsets, or variables to define sensor and actuator health.
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Example 18.2.2 (Kalman Filter Multi-Sensor Fusion Example). Consider a self-
driving car that has an inertial measurement unit (IMU), a GNSS receiver, and
a Lidar unit and where the goal is to leverage all of these sensors to estimate
the position, velocity, and acceleration of the vehicle. This suite of sensors can
provide noisy position estimates (Lidar and GNSS) as well as noisy acceleration
measurements (IMU). For this application, sensor fusion can be accomplished
through a Kalman filter.

First, consider a very simple kinematics model that only models longitudinal
motion:

ṗ = v, v̇ = a,

where p is the longitudinal position, v is the longitudinal velocity, and a is the
longitudinal acceleration. This model is then discretized in time by choosing a
sampling time Ts, yielding the linear difference equation:pt+1
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where the state is defined as x = [p, v, a]>, and ε is Gaussian process noise.
It is assumed that the lidar and GNSS sensors directly measure the position

p, and that the IMU directly measures the acceleration a, such that the measure-
ment model is: zlidar,t
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where δ is Gaussian measurement noise with zero mean and covariance:

Qt =

σ2
lidar 0 0
0 σ2

gnss 0
0 0 σ2

imu

 ,

with σlidar = 0.5, σgnss = 0.1, and σimu = 0.2
Figure 18.2 shows results of the application of the Kalman filter algorithm

for fusing these sensor measurements into position estimates. The top plot
presents a case where the GNSS sensor is not used, and as can be seen the noisy
high-variance lidar measurements result in a noisy estimate of the ground truth
position of the car. However, with the addition of the lower-variance GNSS
sensor in the bottom figure, the estimate of the position is much more accurate.
Generally speaking the estimate would also be more accurate even with the
addition of a sensor that was even more noisy than the lidar, but the impact
would not be as significant.

18.3 Challenges in Sensor Fusion

Sensor fusion problems can generally be quite challenging, and can vary signif-
icantly from application to application. Some of the more common problems in
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Figure 18.2: Kalman filter sen-
sor fusion for Example 18.2.2.
The position of a vehicle is esti-
mated using noisy lidar, GNSS,
and IMU data, and the result-
ing estimate tracks the ground
truth. As can be seen, the addi-
tion of the lower-variance GNSS
results in a better estimate
through sensor fusion.

sensor fusion include registration, bias, correlation, data association, and out-
of-sequence measurements. The registration problem is that coordinates (both
time and space) of different sensors may not always be aligned, which is nec-
essary to ensure they can be appropriately combined. Biases can also arise due
to transformations of the data into the unified set of coordinates. Correlation
between sensors can also occur, even if they are independently collecting data,
and the knowledge of correlation between sensors can have an impact on the
best way to fuse the information. In some robotics applications, data association
can also be a challenge. One simple example is in multi-target tracking prob-
lems, which is similar to the correspondence problem in SLAM problems. Fi-
nally, out-of-sequence measurements also pose a logistical challenge in practical
sensor fusion applications. These issues often arise due to communication lim-
itations among agents in multi-agent settings. Out-of-sequence measurements
might lead to an incorrect temporal order, which in turn causes a negative time
measurement update during data fusion fusion. As a consequence, robot local-
ization is biased or a wrong representation of the environment is created. There
are a couple of methods to avoid that including external triggering, centralized
(time-stamping of data at arrival), or distributed (time-stamping at the time of
data acquisition) approaches.
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Object Tracking

Autonomous systems, such as self-driving cars or robots, rely critically on an
accurate perception of their dynamic environment. Consequently, tracking of
other objects, i.e. predicting the state of remote objects given measurement un-
certainties, ambiguous measurements, occluded objects, or sensor false alarms,
is of great importance for autonomous systems. While single-object tracking
(single hypothesis tracking) is well-understood and typically easy to implement
(one moving target is tracked by one EKF), the tracking of multiple targets is
much more challenging.

18.4 Multi-Object Tracking

Multi-object tracking (MOT) runs a set of estimation filters, one filter for each
object to be tracked. While single-model Kalman filters are predominantly in
use, a bunch of different approaches exists in the literature such as the interact-
ing multiple model (IMM) filter. Challenges of MOT to be faced are

• inherent uncertainties in prediction (state propagation)

• the data association problem (association of observations and targets)

• track maintenance (creating and deleting tracks)

• multiple reflections from a single object

18.5 Gating

In general, we need to look at every single observation and consider how likely
it is to be assigned to a track. To keep the computational efforts low, a screening
algorithm (gating) is applied. During this step, observations outside of a specific
region for each track are ignored, i.e. the data for assignment is significantly
reduced. A rectangular gate is the simplest approach while an ellipsoidal gate is
much more intuitive (normal distribution).

18.6 Data Association

Data association or data assignment is the process of linking an observation to a
tracked object, i.e. to a track. This can be particularly difficult if we have a large
number of targets, many detections, or conflicting hypotheses. Depending on
the dimension, we distinguish between 2-D assignment problems (assigning n
targets to m observations) and S-D assignment problems (assigning n targets to
a set of observations). Within this class, we discuss two typically applied 2-D
techniques:
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• Global Nearest Neighbor (GNN): is a single hypothesis approach that as-
signs the global nearest observations to existing tracks and creates new track
hypotheses for unassigned observations.

• Joint Probabilistic Data Association (JPDA): is a Bayes-based technique that
fuses measurements weighted by the probability of the observation-to-track
association. Clustering is usually applied if too many hypotheses are present.

18.7 Track Maintenance

Consists of two steps: deleting a track and creating a track. If a track has not
been assigned to a detection at least M times during the last N updates, where
N and M are tuning parameters, the track will be deleted. If there is a single
unassigned observation, a new tentative track is created. This track is confirmed
when detected M times over the last N updates and rejected otherwise.

18.8 Extended Object Tracking

If one moving target generated multiple reflections leading to multiple de-
tections, standard MOT algorithms might fail. This might occur if emerging
high-resolution radar sensors are used. These extended objects present new
challenges to conventional trackers since those assume a single detection per
object per sensor. Extended object tracking (EOT) algorithms are able to deal
with this situation. EOT estimate position and velocity, but also the dimensions
and the orientation of the moving object. Prominent algorithms are, among
others, the Gamma-Gaussian inverse Wishart probability hypothesis density
(PHD) tracker and the Gaussian-mixture PHD tracker. Basically, there exist two
different but intuitive approaches in MOT:

• Estimating where each individual target is. Each target gets an identity label
and targets are tracked while trying to maintain the identities. In situations
of targets being closely spaced, that may not be solvable. GNN, JPDA, or
multiple hypotheses tracking (MHT) are typically applied along with state
estimators.

• Estimating where there are targets. In this case, target identities are not rele-
vant. Typically, a random finite set (RFS) description of the targets is used.
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