
17
Simultaneous Localization and Mapping (SLAM)

The previous chapter introduced the robot localization problem, but assumed
that the map m was given. However, in many real-world robotics applications a
map might not be known ahead of time, and therefore it wold need to be built
on-the-fly. This problem, which involves using information about measurements
z and controls u to simultaneously localize the robot in the world and build a
map, is known as simultaneous localization and mapping (SLAM)1. 1 S. Thrun, W. Burgard, and D. Fox.

Probabilistic Robotics. MIT Press, 2005

Simultaneous Localization and Mapping (SLAM)

Many real-world settings are challenging for robotic autonomy because both
the map and the relative pose of the robot are unknown. For example, such a
situation would occur in autonomous search-and-rescue operations where a
robot needs to explore an unknown environment. The SLAM problem addresses
this challenge by estimating the robot pose and constructing a map of the en-
vironment at the same time, based only on measurement z1:t and control u1:t

data.
Generally speaking there are two types of SLAM problems that can be con-

sidered. The online SLAM problem aims to estimate the posterior p(xt, m |
z1:t, u1:t) over the robot’s current pose xt and the map m. Alternatively, the full
SLAM problem estimates the entire path of the robot instead of just the current
position, namely p(x1:t, m | z1:t, u1:t). The difference between these two SLAM
problems is demonstrated graphically in Figure 17.1. Both SLAM problems ex-
perience the same challenge: error in the pose causes error in map estimation
and error in map estimation causes error in the pose estimate. In this chapter,
algorithms for both the online and full SLAM problems are studied.

17.1 EKF SLAM Algorithm

One of the earliest approaches to the online SLAM problem leverages the ex-
tended Kalman filter, and is essentially an extension of the EKF localization
algorithm discussed in the previous chapter. Again, the key aspects to the ap-
proach are the exploitation of Gaussian distributions to model the robot’s belief

2 simultaneous localization and mapping (slam)

Figure 17.1: Difference between
online and full SLAM, where
online SLAM only estimates the
current robot pose while full
SLAM also estimates the robot’s
history.

distribution bel(xt), and state transition and measurement models. It will also
be assumed that the map is feature-based:

m = {m1, m2, . . . , mN},

where mi is the i-th landmark with coordinates (mi,x, mi,y). As in the EKF local-
ization problem, the measurement correspondences can either be assumed to be
known or unknown (more common in practice).

The main idea behind EKF SLAM is that the coordinates (mi,x, mi,y) of each
landmark mi are added, along with the robot pose xt, to an augmented state
vector:

yt =


xt

m1
...

mN

 , (17.1)

where mi = [mi,x, mi,y]
>. With the new state vector y the online SLAM problem

is to compute the posterior:

bel(yt) = p(yt | z1:t, u1:t).

EKF SLAM approaches have the advantage of being computationally efficient
such that they can be run online, and are also well understood from a theoreti-
cal perspective. They can also provide good performance when the uncertainty
is low. However, their main disadvantages are that they are restricted by the
Gaussian assumption to unimodal estimates, and that performance can degrade
in settings with high uncertainty or when the states are not well approximated
by normal distributions.

17.1.1 State Transition and Measurement Models

Assuming that the landmarks mi ∈ m are static, the state transition model for
the augmented state vector y is assumed to be given by:

yt = g(ut, yt−1) + εt, εt ∼ N (0, Rt),

principles of robot autonomy 3

where the nonlinear vector function g is defined by:

g(ut, yt−1) =


g̃(ut, xt−1)

m1,t−1
...

mN,t−1

 ,

and g̃ is the original robot motion model (e.g. differential drive robot model).
The noise covariance is also defined as:

Rt =

[
R̃t 0
0 0

]
,

where R̃t is the noise covariance associated with the original robot motion
model and the rest of the matrix are zeros. The Jacobian of the augmented mo-
tion model is defined as Gt := ∇yg(ut, µt−1) where µt−1 is the expected value of
the belief distribution bel(yt−1) at the previous time.

The measurement model is defined in the same way as the previous chapter:

zi
t = h(yt, j) + δt,

where δt ∼ N (0, Qt) is Gaussian zero-mean noise and j is the index of the
map feature mj ∈ m that measurement i is associated with. The Jacobian is also

defined in the same way with H j
t = ∇yh(µ̄t, j), where µ̄t is the predicted mean

(that results from the EKF prediction step) of the distribution bel(yt).

17.1.2 EKF SLAM with Known Correspondences

As was the case in EKF localization, it is important to specify whether the the
correspondences ci

t between the i-th measurement zi
t and the associated land-

mark in the map is known. In this section an EKF SLAM algorithm will be
developed which assumes the correspondences ct = [c1

t , . . .]> are known.
Algorithm 1 presents the EKF SLAM algorithm with known correspondences.

It is almost identical to the EKF localization algorithm from last chapter, except
that the state vector is augmented with the landmark positions and the positions
of these landmarks are initialized when they are first seen. For this algorithm a
general initialization of the belief distribution bel(y0) is with:

µ0 =


x0

0
...
0

 , Σ0 =


Σ̃0 0 · · · 0
0 ∞ · · · 0
...

...
. . .

...
0 0 · · · ∞

 ,

where:

x0 =


0
...
0

 , Σ̃0 =


0 · · · 0
...

. . .
...

0 · · · 0

 ,

4 simultaneous localization and mapping (slam)

Algorithm 1: Extended Kalman Filter Online SLAM Algorithm
Data: µt−1, Σt−1, ut, zt, ct

Result: µt, Σt

µ̄t = g(ut, µt−1)

Σ̄t = GtΣt−1GT
t + Rt

foreach zi
t do

j = ci
t

if landmark j never seen before then

Initialize

[
µ̄j,x

µ̄j,y

]
as expected position based on zi

t

Si
t = H j

t Σ̄t[H
j
t]

T + Qt

Ki
t = Σ̄t[H

j
t]

T [Si
t]
−1

µ̄t = µ̄t + Ki
t(z

i
t − h(µ̄t, j))

Σ̄t = (I − Ki
tH j

t)Σ̄t
µt = µ̄t

Σt = Σ̄t

return µt, Σt

and x0 and Σ̃ are the initial robot state and associated covariance (which is
set to zero). Since the reference frame for the map can be defined arbitrarily,
this initialization is used to say that the initial robot pose is known to be at
the origin with certainty (and the map is built with respect to that origin). The
covariance of the map positions is set to infinity to reflect that there is initially
no knowledge of their position.

17.2 EKF SLAM with Unknown Correspondences

Performing EKF SLAM when the correspondences between measurements and
landmarks are unknown poses a more challenging problem. In the EKF local-
ization case (when the map was known), a maximum likelihood method was
used to determine correspondence. A similar approach is taken for EKF SLAM,
which uses a maximum likelihood approach based on the estimated landmark
positions. The main difference is that now a mechanism for hypothesizing that a
new landmark has been found is also required. The EKF SLAM with unknown
correspondences algorithm is given in Algorithm 2.

As can be seen there are a couple differences between Algorithm 1 and Al-
gorithm 2. First, the measurements zi

k are used to hypothesize the position of a
new landmark. The Mahalanobis distance dik

t is then computed for all currently
tracked landmarks, and the hypothesized landmark is added if the distance
exceeds a threshold α (i.e. dik

t > α for all k = 1, . . . , Nt).
While this EKF-based algorithm can be used to solve the online SLAM prob-

lem without correspondences, it is not necessarily the most robust approach.

principles of robot autonomy 5

Algorithm 2: EKF Online SLAM Algorithm, Unknown Correspondences
Data: µt−1, Σt−1, ut, zt, Nt−1

Result: µt, Σt

Nt = Nt−1

µ̄t = g(ut, µt−1)

Σ̄t = GtΣt−1GT
t + Rt

foreach zi
t do

Hypothesize position

[
µ̄Nt+1,x

µ̄Nt+1,y

]
from zi

t

foreach k = 1 to Nt + 1 do
ẑk

t = h(µ̄t, k)
Sk

t = Hk
t Σ̄t[Hk

t]
T + Qt

dik
t = (zi

t − ẑk
t)
>[Sk

t]
−1(zi

t − ẑk
t)

di(Nt+1)
t = α

j = arg mink dik
t

Nt = max{Nt, j}
Ki

t = Σ̄t[H
j
t]

T [Sj
t]
−1

µ̄t = µ̄t + Ki
t(z

i
t − ẑj

t)

Σ̄t = (I − Ki
tH j

t)Σ̄t
µt = µ̄t

Σt = Σ̄t

return µt, Σt

In particular, extraneous measurements can result in the creation of fake land-
marks, which will then propagate forward to future steps and cannot be cor-
rected! There are several techniques to mitigate these issues, such as using out-
lier rejection schemes or strategies to enhance the distinctiveness of landmarks
(which may require prior knowledge or assumptions). Another important dis-
advantage of EKF SLAM is that its computational complexity is quadratic with
the number of landmarks N, but generally a large number of landmarks is re-
quired for good localization accuracy!

Example 17.2.1 (Differential Drive Robot with Range and Bearing Measure-
ments). Consider a differential drive robot with state x = [x, y, θ]>, and suppose
a sensor is available on the robot which measures the range r and bearing φ of
landmarks mj ∈ m relative to the robot’s local coordinate frame. Additionally,
multiple measurements corresponding to different features can be collected at
each time step:

zt = {[r1
t , φ1

t]
>, [r2

t , φ2
t]
>, . . . },

where each measurement zi
t contains the range ri

t and bearing φi
t.

6 simultaneous localization and mapping (slam)

For the SLAM problem, the augmented state yt is defined as:

yt =


xt

m1
...

mN

 =
[

x y θ m1,x m1,y . . . mN,x mN,y

]>
.

Assuming the correspondences are known, the measurement model for the
range and bearing is:

h(yt, j) =

[√
(mj,x − x)2 + (mj,y − y)2

atan2(mj,y − y, mj,x − x)− θ

]
. (17.2)

The measurement Jacobian H j
t corresponding to a measurement from landmark

j is then given by:

H j
t =

− µ̄j,x−µ̄t,x√qt,j
− µ̄j,y−µ̄t,y√qt,j

0 0 . . . 0
µ̄j,x−µ̄t,x√qt,j

µ̄j,y−µ̄t,y√qt,j
0 . . .

µ̄j,y−µ̄t,y
qt,j

− µ̄j,x−µ̄t,x
qt,j

−1 0 . . . 0 − µ̄j,y−µ̄t,y
qt,j

µ̄j,x−µ̄t,x
qt,j

0 . . .

 ,

(17.3)
where:

qt,j := (µ̄j,x − µ̄t,x)
2 + (µ̄j,y − µ̄t,y)

2,

and µ̄j,x and µ̄j,y are the estimate of the x and y coordinates of landmark mj

from µ̄t.
With both a range and bearing measurement, the expected position of land-

mark mj is given by: [
µ̄j,x

µ̄j,y

]
=

[
µ̄t,x

µ̄j,y

]
+

[
ri

tcos(φi
t + µ̄t,θ)

ri
tsin(φi

t + µ̄t,θ)

]
.

This can be used in the known-correspondence EKF SLAM algorithm (Algo-
rithm 1) to initialize the landmark position and can be used in the unknown-
correspondence case (Algorithm 2) to hypothesize the position of new land-
marks.

17.3 Particle SLAM Algorithm

Another approach to the robot SLAM problem is to leverage the non-parametric
particle filter. In fact, particle SLAM can be used to solve the full SLAM prob-
lem, unlike EKF SLAM which only solves the online SLAM problem. Specifi-
cally, the full SLAM problem is to estimate the posterior distribution p(x1:t, m |
z1:t, u1:t), which includes the full robot path x1:t up to time t and the map m.
Similar to the EKF SLAM case, the robot state x1:t and map feature positions m
are combined into an augmented state vector y1:t as in (17.1).

A naïve implementation of the particle filter in the context of full SLAM
would be computationally intractable, since the number of particles required

principles of robot autonomy 7

to belief distribution would be extremely large. However, the key insight that
makes this approach tractable is that the posterior over the map elements is con-
ditionally independent given the true path of the robot. Therefore the mapping
component to the problem can be split up into separate problems, correspond-
ing to each feature in the map! Splitting the problem in this way makes the
overall problem much easier to solve.

Overall, particle filter SLAM approaches can be used with any noise dis-
tribution and can express multimodal beliefs since they are non-parametric.
Additionally, in practice they can be relatively easy to implement and can also
be more robust to data association errors. Their main disadvantages are that
they typically do not scale well to large scale problems (too many particles are
needed), and that without enough particles convergence may not occur.

17.3.1 Factoring the Posterior

The key insight of particle SLAM that makes it a computationally tractable
algorithm is that the posterior p(y1:t | z1:t, u1:t, c1:t) can be factored as:

p(y1:t | z1:t, u1:t, c1:t) = p(x1:t | z1:t, u1:t, c1:t)
N

∏
n=1

p(mn | x1:t, z1:t, c1:t), (17.4)

where mn is the n-th feature in the map m, the term p(x1:t | z1:t, u1:t, c1:t) is
referred to as the path posterior, and the terms p(mn | x1:t, z1:t, c1:t) are referred to
as the feature posteriors.

This factorization can be derived by first using Bayes’ rule

p(y1:t | z1:t, u1:t, c1:t) = p(x1:t | z1:t, u1:t, c1:t)p(m | x1:t, z1:t, u1:t, c1:t),

and then noting that since the feature posterior is conditioned on x1:t, the de-
pendence on u1:t is redundant:

p(y1:t | z1:t, u1:t, c1:t) = p(x1:t | z1:t, u1:t, c1:t)p(m | x1:t, z1:t, c1:t).

Now the feature posterior p(m | x1:t, z1:t, c1:t) can be explored in more detail.
In particular two cases can be considered for each landmark mn: the case when
the measurement at time t is not associated with n and the case when it is:

p(mn | x1:t, z1:t, c1:t) =

p(mn | x1:t−1, z1:t−1, c1:t−1), ct 6= n,
p(zt |mn ,xt ,ct)p(mn |x1:t−1,z1:t−1,c1:t−1)

p(zt |x1:t ,z1:t−1,c1:t)
, ct = n,

where in the second case Bayes’ rule was applied. It is now possible to show the
result (17.4) by induction. First, suppose that:

p(m | x1:t−1, z1:t−1, c1:t−1) =
N

∏
n=1

p(mn | x1:t−1, z1:t−1, c1:t−1).

8 simultaneous localization and mapping (slam)

Then, using Bayes’ rule at time t:

p(m | x1:t, z1:t, c1:t) =
p(zt | m, xt, ct)p(m | x1:t−1, z1:t−1, c1:t−1)

p(zt | x1:t, z1:t−1, c1:t)
,

=
p(zt | m, xt, ct)

p(zt | x1:t, z1:t−1, c1:t)

N

∏
n=1

p(mn | x1:t−1, z1:t−1, c1:t−1).

Next, applying the analysis above for the cases where ct 6= n and ct = n:

p(m | x1:t, z1:t, c1:t) = p(mct | x1:t, z1:t, c1:t) ∏
n 6=ct

p(mn | x1:t, z1:t, c1:t),

=
N

∏
n=1

p(mn | x1:t, z1:t, c1:t).

17.3.2 Fast SLAM with Known Correspondences

The particle SLAM algorithm referred to as Fast SLAM uses the factorization
of the posterior p(y1:t | z1:t, u1:t, c1:t) in (17.4) to decompose the full SLAM
problem into more manageable sub-problems. Specifically, the path posterior
p(x1:t | z1:t, u1:t, c1:t) is estimated using a particle filter and the feature posteriors
p(mn | x1:t, z1:t, c1:t) are estimated by EKFs conditioned on the robot path x1:t

(i.e. there is a separate EKF for each feature mn).
Accordingly, the set of particles is given as:

Yt := {Y[1]
t , Y[2]

t , ..., Y[M]
t },

where the k-th particle is defined by:

Y[k]
t = {x[k]t , µ

[k]
1,t, Σ

[k]
1,t, . . . , µ

[k]
N,t, Σ

[k]
N,t},

where x[k]t is a hypothesis of the robot state at time t, (µ[k]
n,t, Σ

[k]
n,t) are the mean

and covariance of the EKF associated with landmark mn, and where it is as-
sumed that there are N total landmarks in the map m. As can be seen, with a
total of M particles there are a total of NM EKFs! To summarize, the Fast SLAM
algorithm is a particle based algorithm where each particle keeps track of a
hypothesis of the robot state as well as the location (and uncertainty) of each
landmark in the map! The algorithm is defined in Algorithm 3.

Note the blending of the classical particle filter algorithm with the EKF lo-
calization algorithm. In particular, the particle filter steps can be seen with the
sampling of the new pose xt from the state transition model and the use of the
weights w for resampling a new set of particles (i.e. the measurement correc-
tion step). The EKF portions of the algorithm correspond to how the features
are tracked, and in particular how the mean and covariance of the Gaussian
corresponding to each landmark are updated based on new measurements.

principles of robot autonomy 9

Algorithm 3: Fast SLAM Algorithm
Data: Yt−1, ut, zt, ct

Result: Yt

for k = 1 to M do

Sample x[k]t ∼ p(xt | ut, x[k]t−1)

j = ct

if landmark j never seen before then

Initialize feature: (µ[k]
j,t−1, Σ

[k]
j,t−1)

else

ẑ[k] = h(µ[k]
j,t−1, x[k]t)

S = H jΣ
[k]
j,t−1[H

j]T + Qt

K = Σ
[k]
j,t−1[H

j]T [S]−1

µ
[k]
j,t = µ

[k]
j,t−1 + K(zt − ẑ[k])

Σ
[k]
j,t = (I − KH j)Σ

[k]
j,t−1

w[k] = det(2πS)−1/2exp
(
− 1

2 (zt − ẑ[k])Q−1(zt − ẑ[k])
)

for n ∈ {1, . . . , N}, n 6= ct do

µ
[k]
n,t = µ

[k]
n,t−1

Σ
[k]
n,t = Σ

[k]
n,t−1

Yt = ∅
for m = 1 to M do

Draw k with probability ∝ w[k]
t

Yt = Yt ∪ (x̄[k]t , µ
[k]
1,t, Σ

[k]
1,t, . . . , µ

[k]
N,t, Σ

[k]
N,t)

return Yt

17.4 Exercises

17.4.1 EKF SLAM

Complete Problem 2: EKF SLAM located in the online repository:

https://github.com/PrinciplesofRobotAutonomy/AA274A_HW4,

where you will implement an EKF SLAM algorithm. Note that the EKF lo-
calization exercise from the chapter on parametric filters should be completed
first.

Bibliography

[1] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. MIT Press, 2005.

