
16
Robot Localization

The last few chapters introduced some of the most widely used algorithms
based on Bayes’ filter for probabilistic robot localization and state estimation.
However these fundamental algorithms still need further enhancements before
application to many robot localization tasks, since in their standard form they
don’t incorporate a notion of a local map. For example, a particle filter could be
applied in its original form to a problem of global localization based on GNSS
measurements, but localizing based on range measurements requires knowledge
about what object is being ranged, and where that object is with respect to the
local environment (i.e. the map). In this chapter a more specific definition of
mobile robot localization is considered1, namely the problem of determining the 1 S. Thrun, W. Burgard, and D. Fox.

Probabilistic Robotics. MIT Press, 2005pose of a robot relative to a given map of the environment.

Robot Localization

Localization with respect to a map can be interpreted as a problem of coordi-
nate transformation. Maps are described in a global coordinate system, which
is independent of a robot’s pose. Localization can then be viewed as the process
of establishing a correspondence between the map coordinate system and the
robot’s local coordinate system. Knowing this coordinate transformation then
enables the robot to express the location of objects of interest within its own
coordinate frame (a necessary prerequisite for robot autonomy).

In 2D problems, knowing the pose xt = [x, y, θ]> of a robot is sufficient to
establish this correspondence, and an ideal sensor would directly be able to
measure this pose. However in practice no such sensor exists, and therefore
indirect (often noisy) measurements zt of the pose are used. Since it is almost
impossible to be able to reliably estimate xt from a single measurement zt, local-
ization algorithms typically integrate additional data over time to build reliable
localization estimates. For example, consider a robot located inside a building
where many corridors look alike. In this case a single sensor measurement (e.g.
a range scan) is usually insufficient to disambiguate the identity of the corridor
from the others.

In this chapter it will be seen how this map-based localization problem can

2 robot localization

be cast in the Bayesian filtering framework, such that the algorithms from previ-
ous chapters can be leveraged.

16.1 A Taxonomy of Localization Problems

To understand the broad scope of challenges related to robot localization, it is
useful to develop a brief taxonomy of localization problems. This categorization
will divide localization problems along a number of important dimensions
pertaining to the nature of the environment (e.g. static versus dynamic), the
initial knowledge that a robot may possess, and how information about the
environment is gathered (e.g. passive or active, with one robot or collaboratively
with several robots).

16.1.1 Local vs. Global

Localization problems can be characterized by the type of knowledge that is
available initially, which has a significant impact on what type of localization
algorithm is most appropriate for the problem.

• Position tracking problems assume that the initial pose of the robot is known.
In these types of problems only incremental updates are required (i.e. the lo-
calization error is generally always small), and therefore unimodal Gaussian
filters (e.g. Kalman filters) can be efficiently applied.

• Global localization problems assume that the initial pose of the robot is un-
known. In these scenarios the use of a unimodal parametric belief distribu-
tion cannot adequately capture the global uncertainty. Therefore it is more
appropriate to use non-parametric, multi-hypothesis filters, such as the parti-
cle filter.

• The kidnapped robot problem is a variant of the global localization problem (i.e.
unknown initial pose) where the robot can get “kidnapped” and “teleported”
to some other location. This problem is more difficult than the global local-
ization problem since the localization algorithm needs to have an awareness
that sudden drastic to the robot’s pose are possible. While robots are typi-
cally not “kidnapped” in practice, the consideration of this type of problem
is useful for ensuring the localization algorithm is robust, since the ability to
recover from failure is essential for truly autonomous robots. Similar to the
global localization problem, these problems are often best addressed using
non-parametric, multi-hypothesis filters.

16.1.2 Static vs. Dynamic

Environmental changes are another important consideration in mobile robot
localization, specifically whether they are static or dynamic.

principles of robot autonomy 3

• In static environments the robot is the only object that moves. Static environ-
ments are generally much easier to perform localization in.

• Dynamic environments possess objects other than the robot whose locations
or configurations change over time. This problem is usually addressed by
augmenting the state vector to include the movement of dynamic entities, or
by filtering the sensor data to remove the effects of environment dynamics.

16.1.3 Passive vs. Active

Information collected via measurements is crucial for robot localization. There-
fore it is reasonable to consider localization problems where the robot can ex-
plicitly choose its actions to gather more (or more specific) information from the
environment.

• Passive localization problems assume that the robot’s motion is unrelated to its
localization process.

• Active localization problems consider the ability of the robot to choose its
actions (at least partially) to improve its understanding of the environment.
For example, a robot in the corner of a room might choose to reorient itself
to face the rest of the room, so it can collect environmental information as it
moves along the wall. Hybrid approaches are also possible, since it may be
inefficient to use active localization all of the time.

16.1.4 Single Robot vs. Multi-Robot

It is of course also possible to consider problems where several robots all gather
independent information and then share that information with each other.

• Single-robot localization problems are the most commonly studied and uti-
lized approach, and are often simpler because all data is collected on a single
platform.

• Multi-robot localization problems consider teams of robots that share informa-
tion in such a way that one robot’s belief can be used to influence another
robot’s belief if the relative location between robots is known.

16.2 Robot Localization via Bayesian Filtering

The parametric (e.g. EKF) and non-parametric (e.g. particle) filters from the pre-
vious chapters are all variations of the Bayes filter. In particular they rely on a
Markov process assumption and the identification of probabilistic measurement
models. In this section it is shown how map-based robot localization can be
cast into this framework, such that the previously discussed algorithms can be
applied.

4 robot localization

Similar to the general filtering context from the previous chapters, at time t
the state is denoted by xt, the control input is denoted by ut, and the measure-
ments are denoted by zt. For example, a differential drive robot equipped with
a laser range-finder (returning a set of range measurements ri and bearings φi),
the state, control, and measurements would be:

xt =

x
y
θ

 , ut =

[
v
ω

]
, zt =


r1

φ1
...

 . (16.1)

However, the critical new component is the concept of a map (denoted as m),
which is a list of objects in the environment along with their properties:

m = {m1, m2, . . . , mN}, (16.2)

where mi represents the properties of a specific object. Generally there are two
types of maps that will be considered, location-based maps and feature-based
maps, which typically have differences in both computational efficiency and
expressiveness.

For location-based maps, the index i associated with object mi corresponds
to a specific location (i.e. mi are volumetric objects). For example, objects mi

in a location-based map might represent cells in a cell decomposition or grid
representation of a map (see Figure 16.1). One potential disadvantage of the

Figure 16.1: Two examples
of location-based maps, both
represent the map as a set of
volumetric objects (i.e. cells in
these cases).

cell-based maps is that their resolution is dependent on the size of the cells, but
their advantage is that they can explicitly encode information about presence (or
absence) of objects in specific locations.

For feature-based maps, an index i is a feature index, and mi contains in-
formation about the properties of that feature, including its Cartesian location.
These types of maps can typically be thought of as a collection of landmarks.
Figure 16.2 gives two examples of feature-based maps, one which is represented
by a set of lines, and another which is represented by nodes and edges like a
graph (i.e. a topological map). Feature-based maps can be more finely tuned to
specific environments, for example the line-based map might make sense to use
in highly structured environments such as buildings. While feature-based maps
can be computationally efficient, their main disadvantage is that they typically
do not capture spatial information about all potential obstacles.

principles of robot autonomy 5

Figure 16.2: Two examples of
feature-based maps.16.2.1 State Transition Model

In the previous chapters on Bayesian filtering the probabilistic state transition
model p(xt | ut, xt−1) describes the posterior distribution over the states that the
robot could transition to when executing control ut from xt−1. However in robot
localization problems it might be important to take into account how the map m
could affect the state transition since in general:

p(xt | ut, xt−1) 6= p(xt | ut, xt−1, m).

For example, p(xt | ut, xt−1) cannot account for the fact that a robot cannot
move through walls since it doesn’t know that walls exist!

However, a common approximation is to make the assumption that:

p(xt | ut, xt−1, m) ≈ η
p(xt | ut, xt−1)p(xt | m)

p(xt)
, (16.3)

where η is a normalization constant. This approximation can be derived from
Bayes’ rule by assuming that p(m | xt, xt−1, ut) ≈ p(m | xt) (which is a tight
approximation under high update rates). More specifically:

p(xt | ut, xt−1, m) =
p(m|xt, xt−1, ut)p(xt | xt−1, ut)

p(m | xt−1, ut)
,

= η′p(m|xt, xt−1, ut)p(xt | xt−1, ut),

≈ η′p(m|xt)p(xt | xt−1, ut),

= η
p(xt | ut, xt−1)p(xt | m)

p(xt)
,

where η′ and η are normalization constants (such that the total probability
density integrates to one).

In this approximation the term p(xt | m) is the state probability conditioned
on the map which can be thought of as describing the “consistency” of state
with respect to the map. The approximation (16.3) can therefore be viewed as
making a probabilistic guess using the original state transition model (without
map knowledge), and then using the consistency term p(xt | m) to check the
plausibility of the new state xt given the map.

6 robot localization

16.2.2 Measurement Model

The probabilistic measurement model model p(zt | xt) from previous chap-
ters also needs to be modified to take map information into account. This new
measurement model can simply be expressed as p(zt | xt, m) (i.e. measurement
is also conditioned on the map). This is obviously important because the local
measurements can have significant influence from the environment. For exam-
ple a range measurement is dependent on what object is currently in the line of
sight.

Additionally, since the suite of sensors on a robot may generate more than
one measurement when queried, it is also common to make another measure-
ment model assumption for simplicity. Suppose K measurements are taken at
time t, such that:

zt =


z1

t
...

zK
t

 .

Then it can often be assumed that each of the K measurements are conditionally
independent from each other (i.e. when conditioned on xt and m the probabil-
ity of measuring zk

t is independent from the other measurements). With this
assumption the probabilistic measurement model can be expressed as:

p(zt | xt, m) =
K

∏
k=1

p(zk
t | xt, m). (16.4)

16.3 Markov Localization

With the probabilistic state transition and measurement models that include the
map, the Bayes’ filter can be directly modified as shown in Algorithm 1. As can

Algorithm 1: Markov Localization Algorithm

Data: bel(xt−1), ut, zt, m
Result: bel(xt)

foreach xt do
bel(xt) =

∫
p(xt | ut, xt−1, m)bel(xt−1)dxt−1

bel(xt) = ηp(zt | xt, m)bel(xt)

return bel(xt)

be seen, this algorithm is conceptually identical to the Bayes’ filter except for the
inclusion of the model m. This algorithm is referred to as the Markov localization
algorithm, and the localization problem it is trying to solve is generally referred
to as simply Markov localization2. 2 Recall the use of the Markov property

assumption in the derivation of the
Bayes’ filter.

The Markov localization algorithm can be used to address global localization,
position tracking, and kidnapped robot problems, but generally some imple-
mentation details might be different. The choice for the initial (prior) belief

principles of robot autonomy 7

distribution bel(x0) is one such parameter that may be different depending on
the type of localization problem.

Specifically, since the initial belief encodes any prior knowledge about the
robot pose, the best choice of distribution depends on what (if any) knowledge
is available. For example, in the position tracking problem it is assumed that
an initial pose of the robot is known. Therefore choosing a (unimodal) Gaus-
sian distribution bel(x0) ∼ N (x̄0, Σ0) with a small covariance might be a good
choice. Alternatively, for a global localization problem the initial pose is not
known. In this case an appropriate choice for the initial belief would be a uni-
form distribution bel(x0) = 1/|X| over all possible states x.

Similarly to the original Bayes’ filter from previous chapters, the Markov lo-
calization algorithm 1 is generally not possible to implement in a computation-
ally tractable way. However, practical implementations can still be developed
by again leveraging some sort of structure to the belief distribution bel(xt) (e.g.
through Gaussian or particle representations). Two commonly used implemen-
tations based on specific structured beliefs will now be discussed: extended
Kalman filter localization and Monte Carlo localization.

16.4 Extended Kalman Filter (EKF) Localization

The extended Kalman filter (EKF) localization algorithm is essentially equivalent
to the EKF algorithm presented in previous chapters, except that it also takes
the map m into account. In particular, it still makes a Guassian belief assump-
tion, bel(xt) ∼ N (µt, Σt), to add structure to the filtering problem. As a brief
review, the assumed state transition model is given by:

xt = g(ut, xt−1) + εt,

where εt ∼ N (0, Rt) is Gaussian zero-mean noise. The Jacobian Gt is again
defined by Gt = ∇xg(ut, µt−1), where µt−1 is the expected value of the previous
belief distribution bel(xt−1).

The main difference in EKF localization is the assumption that a feature-
based map is available, consisting of point landmarks given by:

m = {m1, m2, . . . , mN}, mj = (mj,x, mj,y),

where N is the total number of landmarks, and each landmark mj encapsulates
the location (mj,x, mj,y) of the landmark in the global coordinate frame. Mea-
surements zt associated with these point landmarks at a time t are denoted by:

zt = {z1
t , z2

t , . . . },

where zi
t is associated with a particular landmark and is assumed to be gener-

ated by the measurement model:

zi
t = h(xt, j, m) + δt,

8 robot localization

where δt ∼ N (0, Qt) is Gaussian zero-mean noise and j is the index of the map
feature mj ∈ m that measurement i is associated with.

One fundamental problem that now needs to be addressed is the data as-
sociation problem, which arises due to uncertainty in which measurements are
associated with which landmark. To begin addressing this problem, the corre-
spondences are modeled through a variable ci

t ∈ {1, . . . , N + 1}, which take on
the values ci

t = j if measurement i corresponds to landmark j, and ci
t = N + 1 if

measurement i has no corresponding landmark. Then, given a correspondence
ci

t of measurement i (associated with a specific landmark), the Jacobian Hi
t used

in the EKF measurement correction step can be determined. Specifically, for the
i-th measurement the Jacobian of the new measurement model can be computed

by Hci
t

t = ∇xh(µ̄t, ci
t, m), where µ̄t is the predicted mean (that results from the

EKF prediction step).

16.4.1 EKF Localization with Known Correspondences

In practice the correspondences between measurements zi
t and landmarks mj

are generally unknown. However, it is useful from a pedagogical standpoint to
first consider the case where these correspondences ct = [c1

t , . . .]> are assumed
to be known.

In the EKF localization algorithm given in Algorithm 2, the main difference
from the original EKF filter algorithm is that multiple measurements are pro-
cessed at the same time. Crucially, this is accomplished in a computationally
efficient way by exploiting the conditional independence assumption (16.4)
for the measurements. In fact, by exploiting this assumption and some special
properties of Gaussians, the multi-measurement update can be implemented
by just looping over each measurement individually and applying the standard
EKF correction.

Algorithm 2: Extended Kalman Filter Localization Algorithm
Data: µt−1, Σt−1, ut, zt, ct, m
Result: µt, Σt

µ̄t = g(ut, µt−1)

Σ̄t = GtΣt−1GT
t + Rt

foreach zi
t do

j = ci
t

Si
t = H j

t Σ̄t[H
j
t]

T + Qt

Ki
t = Σ̄t[H

j
t]

T [Si
t]
−1

µ̄t = µ̄t + Ki
t(z

i
t − h(µ̄t, j, m))

Σ̄t = (I − Ki
tH j

t)Σ̄t
µt = µ̄t

Σt = Σ̄t

return µt, Σt

principles of robot autonomy 9

16.4.2 EKF Localization with Unknown Correspondences

For EKF localization with unknown correspondences, the correspondence vari-
ables must also be estimated! The simplest way to determine the correspon-
dences online is to use maximum likelihood estimation, in which the most likely
value of the correspondences ct is determined by maximizing the data likeli-
hood:

ĉt = arg max
ct

p(zt | c1:t, m, z1:t−1, u1:t)

In other words, the set of correspondence variables is chosen to maximize the
probability of getting the current measurement given the history of correspon-
dence variables, the map, the history of measurements, and the history of con-
trols. By marginalizing over the current pose xt this distribution can be written
as:

p(zt | c1:t, m, z1:t−1, u1:t) =
∫

p(zt | c1:t, xt, m, z1:t−1, u1:t)p(xt | c1:t, m, z1:t−1, u1:t)dxt,

=
∫

p(zt | ct, xt, m)bel(xt)dxt.

Note that the term p(zt | c1:t, xt, m) is essentially the assumed measurement
model given known correspondences. Then, by again leveraging the conditional
independence assumption for the measurements zi

t from (16.4), this can be
written as:

p(zt | c1:t, m, z1:t−1, u1:t) =
∫

∏
i

p(zi
t | ci

t, xt, m)bel(xt)dxt.

Importantly, each decision variable ci
t in the maximization of this quantity

shows up in separate terms of the product! Therefore it is possible to maximize
each parameter independently by solving the optimization problems:

ĉi
t = arg max

ci
t

∫
p(zi

t | ci
t, xt, m)bel(xt)dxt.

This problem can be solved quite efficiently since it is assumed that the mea-
surement models and belief distributions are Gaussian3. In particular, the prob- 3 Similar to the previous chapters, in

this case the product of terms inside
the integral will be Gaussian since both
terms are Gaussian.

ability distribution resulting from the integral is a Gaussian with mean and
covariance:∫

p(zi
t | ci

t, xt, m)bel(xt)dxt ∼ N (h(µ̄t, ci
t, m), Hci

t
t Σ̄t[H

ci
t

t]
> + Qt).

The maximum likelihood optimization problem can therefore be expressed as:

ĉi
t = arg max

ci
t

N (zi
t | ẑci

t
t , Sci

t
t),

where ẑj
t = h(µ̄t, j, m) and Sj

t = H j
t Σ̄t[H

j
t]
> + Qt. To solve this maximization

problem, recall the definition of the Gaussian distribution:

N (zi
t | ẑj

t, Sj
t) = η exp

(
− 1

2
(zi

t − ẑj
t)
>[Sj

t]
−1(zi

t − ẑj
t)
)
,

10 robot localization

where η is a normalization constant. Since the exponential function is mono-
tonically increasing and since η is a positive constant, the maximum likelihood
estimation problem can be equivalently expressed as:

ĉi
t = arg min

ci
t

di,ci
t

t , (16.5)

where
dij

t = (zi
t − ẑj

t)
>[Sj

t]
−1(zi

t − ẑj
t), (16.6)

is referred to as the Mahalanobis distance.
The EKF localization algorithm with unknown correspondences is very simi-

lar to Algorithm 2, except with the addition of this maximum likelihood estima-
tion step. This new algorithm is given in Algorithm 3.

Algorithm 3: EKF Localization Algorithm, Unknown Correspondences
Data: µt−1, Σt−1, ut, zt, m
Result: µt, Σt

µ̄t = g(ut, µt−1)

Σ̄t = GtΣt−1GT
t + Rt

foreach zi
t do

foreach landmark k in the map do
ẑk

t = h(µ̄t, k, m)

Sk
t = Hk

t Σ̄t[Hk
t]

T + Qt

j = arg mink (zi
t − ẑk

t)
>[Sk

t]
−1(zi

t − ẑk
t)

Ki
t = Σ̄t[H

j
t]

T [Sj
t]
−1

µ̄t = µ̄t + Ki
t(z

i
t − ẑj

t)

Σ̄t = (I − Ki
tH j

t)Σ̄t
µt = µ̄t

Σt = Σ̄t

return µt, Σt

One of the disadvantages of using the maximum likelihood estimation is that
it can be brittle with respect to outliers and in cases where there are equally
likely hypothesis for the correspondence. An alternative approach to estimating
correspondences that is more robust to outliers is to use a validation gate. In this
approach the Mahalanobis smallest distance dij

t must also pass a thresholding
test:

(zi
t − ẑj

t)
>[Sj

t]
−1(zi

t − ẑj
t) ≤ γ,

in order for a correspondence to be created.

Example 16.4.1 (Differential Drive Robot with Range and Bearing Measure-
ments). Consider a differential drive robot with state x = [x, y, θ]>, and suppose
a sensor is available on the robot which measures the range r and bearing φ of
landmarks mj ∈ m relative to the robot’s local coordinate frame. Additionally,

principles of robot autonomy 11

multiple measurements corresponding to different features can be collected at
each time step:

zt = {[r1
t , φ1

t]
>, [r2

t , φ2
t]
>, . . . },

where each measurement zi
t contains the range ri

t and bearing φi
t.

Assuming the correspondences are known, the measurement model for the
range and bearing is:

h(xt, j, m) =

[√
(mj,x − x)2 + (mj,y − y)2

atan2(mj,y − y, mj,x − x)− θ

]
. (16.7)

The measurement Jacobian H j
t corresponding to a measurement from landmark

j is then given by:

H j
t =

− mj,x−µ̄t,x√
(mj,x−µ̄t,x)2+(mj,y−µ̄t,y)2 − mj,y−µ̄t,y√

(mj,x−µ̄t,x)2+(mj,y−µ̄t,y)2 0
mj,y−µ̄t,y

(mj,x−µ̄t,x)2+(mj,y−µ̄t,y)2 − mj,x−µ̄t,x

(mj,x−µ̄t,x)2+(mj,y−µ̄t,y)2 −1

 . (16.8)

It is also common to assume that the covariance of the measurement noise is
given by:

Qt =

[
σ2

r 0
0 σ2

φ

]
,

where σr is the standard deviation of the range measurement noise and σφ is the
standard deviation of the bearing measurement noise. This diagonal covariance
matrix is typically used since these two measurements can be assumed to be
uncorrelated.

16.5 Monte Carlo Localization (MCL)

Another approach to Markov localization is the Monte Carlo localization (MCL)
algorithm. This algorithm leverages the non-parametric particle filter algorithm
from the previous chapter, and is therefore much better suited to solving global
localization problems (unlike EKF localization which only solves position track-
ing problems). MCL can also be used to solve the kidnapped robot problem
through some small modifications, such as injecting new random particles at
each step to ensure that a “particle collapse” problem does not occur.

As a brief review, the particle filter represents the belief bel(xt) by a set of M
particles:

Xt := {x[1]t , x[2]t , ..., x[M]
t },

where each particle x[m]
t represents a hypothesis about the true state xt. At each

step of the algorithm the state transition model is used to propagate forward the
particles, and then the measurement model is used to resample particles based
on the measurement likelihood. This algorithm is shown in Algorithm 4, and is
nearly identical to the particle filter algorithm except that the map m is used in
the probabilistic state transition and measurement models.

12 robot localization

Algorithm 4: Monte Carlo Localization Algorithm
Data: Xt−1, ut, zt, m
Result: Xt

X̄t = Xt = ∅
for m = 1 to M do

Sample x̄[m]
t ∼ p(xt | ut, x[m]

t−1, m)

w[m]
t = p(zt | x̄[m]

t , m)

X̄t = X̄t ∪
(

x̄[m]
t , w[m]

t
)

for m = 1 to M do

Draw i with probability ∝ w[i]
t

Add x̄[i]t to Xt

return Xt

Bibliography

[1] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. MIT Press, 2005.

