
15
Nonparametric Filters

Previous chapters introduced several algorithms for robot localization and state
estimation that are based on a probabilistic framework. In particular, the Bayes
filter was first introduced as a fundamental approach to the problem, which
uses a probabilistic state transition model and a measurement model to recur-
sively update a belief distribution over possible states. A set tractable imple-
mentations of the Bayes filter that model the belief distribution in a parametric
way, for example using Gaussian distributions, was then presented (in particular
the Kalman and extended Kalman filters). These filters leverage the structure
of the parametric belief distribution to provide a computationally efficient ap-
proach to dealing with continuous state spaces (which have an infinite number
of states). For example the Gaussian distribution represents a continuous dis-
tribution through a finite set of parameters: the mean and covariance. However
there are also other implementations of Bayes filter that can be efficiently used
in continuous state spaces that are non-parametric.

Nonparametric Filters

1 In contrast to parametric filters, non-parametric filters do not make assumptions 1 S. Thrun, W. Burgard, and D. Fox.
Probabilistic Robotics. MIT Press, 2005on the structure of the belief distribution. This can be a desirable property for

applications in robotics where rigid structures in the belief distribution may re-
sult in poor performance. A classic example is that the Gaussian distributions
used in the Kalman filter and EKF are unimodal, which cannot express the pos-
sibility that two distinct “high probability” states might exist at the same time.
Non-parametric filters on the other hand generally represent the belief distri-
bution in an unstructured way, for example through a finite number of samples
drawn from the distribution, which allows for more expressive distributions.
This chapter introduces two main approaches for non-parametric filtering: the
histogram filter and the particle filter.
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15.1 Histogram Filter

The histogram filter is essentially a modification of the discrete Bayes filter pre-
sented earlier to work in continuous state spaces. In particular, the continuous
state space is decomposed into a finite number of regions and the belief is repre-
sented over the discretized space by collecting the finite number of probabilities
of the state being in each discretized region.

In particular for the random state variable Xt, the continuous state space
dom(Xt) is decomposed into a finite set of regions (often called bins in the con-
text of histogram filters):

dom(Xt) = x1,t ∪ x2,t ∪ ...∪ xK,t, (15.1)

where xk,t is the k-th “bin”. For example, if the one-dimensional random vari-
able X could take on values in the interval [a, b] then one possible decompo-
sition would be to split the interval into a finite number of sub-intervals with
equal width. The belief distribution is then defined in non-parametric way by
simply specifying a probability pk,t to each bin xk,t. A probability density func-
tion can then be defined in a piecewise manner:

p(xt) =
pk,t

|xk,t|
, xt ∈ xk,t, (15.2)

where |xk,t| denotes the “area” or “volume” of the bin. This definition implies
that the probability that the random variable Xt takes on any value in the bin
xk,t is equal to pk,t.

The prediction and measurement update steps of the Bayes filter are then
accomplished by also discretizing the state transition and measurement models
by computing a representative “mean” state for each bin:

x̂k,t = |xk,t|−1
∫

xk,t

xtdxt. (15.3)

The state transition model p(xk,t | ut, xi,t−1) that defines the probability of
transitioning from one bin to another is then approximated in terms of the mean
bin states by:

p(xk,t | ut, xi,t−1) ≈ η|xk,t|p(x̂k,t | ut, x̂i,t−1), (15.4)

where p(x̂k,t | ut, x̂i,t−1) is the original (non-discretized) state transition model
evaluated at the mean bin states x̂ and η is a normalization constant2. 2 In the case that the bin areas |xk,t| are

equal, these terms can be absorbed into
the normalization constant.

The discretization of the measurement model is accomplished in a similar
manner, with the discretized model given by:

p(zt | xk,t) ≈ p(zt | x̂k,t). (15.5)

In other words, the measurement probability associated with a bin is approxi-
mated by the measurement probability associated with the mean bin state x̂k,t.

After the discretization has been performed, the discrete Bayes filter algo-
rithm from before can be directly applied by iterating over each bin and updat-
ing the probability pk,t.
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15.2 Particle Filter

The particle filter is another non-parametric filter that provides a computation-
ally tractable implementation of the Bayes filter for continuous state spaces. This
filter represents the belief distribution by a finite set of random samples called
particles, which are denoted by:

Xt := {x[1]t , x[2]t , ..., x[M]
t }. (15.6)

Each particle x[m]
t represents a hypothesis about the true state xt, and therefore

regions of the state space with more particles correspond to regions of high
probability. Ideally, the particles are distributed according to the current belief:

x[m]
t ∼ p(xt | z1:t, u1:t) = bel(xt), (15.7)

but theoretically this only occurs as M → ∞. Instead the set of particles ap-
proximately represents the belief distribution, and in practice around M ≈ 1000
samples tends to be sufficient (but of course this depends on the application).

The particle filter updates the belief (via a prediction and measurement cor-
rection step) by manipulating the prior set of particles Xt−1 to yield a new set
of particles Xt. The prediction step is implemented by considering each particle
x[m]

t−1 in the prior set Xt−1 and sampling from the state transition model a new

“predicted” sample x̄[m]
t ∼ p(xt | ut, x[m]

t−1). An importance factor w[m]
t is then

defined for the predicted sample x̄[m]
t based on how well the observed measure-

ment matches the prediction. Specifically, the importance factor is computed as
w[m]

t = p(zt | x̄[m]
t ). The predicted particles x̄[m]

t and their associated weights

w[m]
t can then be collected in a new particle set X̄t, which represents the pre-

dicted belief distribution bel(xt). The correction step is then accomplished by
simply resampling (with replacement) a new set of M particles from the pre-
dicted set X̄t with a probability proportional to the weights w[m]

t . This procedure
performs the measurement correction by giving preference in the new sample
set to those predicted particles that showed higher correlation to the measure-
ment zt. The resampled points are then collected in a new set Xt that defines
the posterior belief distribution. This algorithm is also outlined in Algorithm 1

and a few iterations of the algorithm for a simple robot localization problem are
shown in Figure 15.1.

Note that the concept of resampling in the correction step can be quite impor-
tant for reasons beyond just updating the belief for the measurement correction.
In particular, without the resampling step over time some of the particles would
drift to regions of low probability and there would be fewer particles to rep-
resent the regions of high probability. The resampling step can therefore be
viewed as a probabilistic implementation of the Darwinian idea of survival of
the fittest: it refocuses the particle set to regions in state space with high poste-
rior probability. This helps from a computational efficiency standpoint because
it reduces the number of particles that are needed by focusing them on the re-
gions of the state space that matter (i.e. regions of high probability).
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Algorithm 1: Particle Filter Algorithm
Data: Xt−1, ut, zt

Result: Xt

X̄t = Xt = ∅
for m = 1 to M do

Sample x̄[m]
t ∼ p(xt | ut, x[m]

t−1)

w[m]
t = p(zt | x̄[m]

t )

X̄t = X̄t ∪
(

x̄[m]
t , w[m]

t
)

for m = 1 to M do

Draw i with probability ∝ w[i]
t

Add x̄[i]t to Xt

return Xt

15.3 Exercises

15.3.1 Monte Carlo Localization

Complete Extra Credit: Monte Carlo Localization located in the online repository:

https://github.com/PrinciplesofRobotAutonomy/AA274A_HW4,

where you will implement a particle filter for localizing a robot with line
feature extraction, similar to the exercise on EKF localization from the previous
chapter.
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Figure 15.1: Particle filter used
for robot localization. The ini-
tial set of particles are first
updated according to the transi-
tion model, and then weighted
according to the observation.
Finally, a new set of particles
is generated through weighted
resampling.
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