11
Information Extraction

The last chapter introduced some fundamental topics related to image process-
ing, namely filtering, feature detection, and feature description. While these
techniques are quite useful for a large number of computer vision applications,
they may not be sufficient to extract higher-level information from images. For
example, the features that were discussed are local features that describe impor-
tant keypoints of the image, but these may be too localized to discuss higher-
level features or semantic content. In some cases it may be possible to correlate
local features to extract higher-level information (e.g. image matching), but
in other cases higher-level algorithms may be useful (e.g. identifying a partic-
ular object in a scene, such as a person). In particular, object recognition is a
very important task in robotics and therefore some common methods for object
recognition will be discussed in this chapter.

This chapter will additionally focus on geometric feature extraction’, which
is used to extract structure from data in the form of geometric primitives (e.g.
lines, circles, planes). This is very useful in robotics for localization and map-
ping, and these algorithms can generally be applied to different types of data,
such as data extracted from images or even data collected via laser rangefinders
or radar.

Information Extraction

This chapter will focus on common methods for extracting higher-level envi-
ronmental information from sensor data that is useful for robotics. In particular,
common algorithms for geometric feature extraction will be presented, as well as
methods for object recognition in images. Such information is crucial for robots
operating in real environments to enable intelligent decision making and task
planning, as well as to execute plans safely in unknown environments with
obstacles.

*R. Siegwart, I. R. Nourbakhsh, and D.
Scaramuzza. Introduction to Autonomous
Mobile Robots. MIT Press, 2011

2 INFORMATION EXTRACTION

11.1 Geometric Feature Extraction

It is very common in robotic localization and mapping to represent the envi-
ronment using simple geometric primitives (e.g. lines, circles, corners, planes)
that can be efficiently extracted from sensor data. In particular, in this section

techniques for line extraction from range data® will be presented. Lines in par- 2Range data can generally come from
a variety of sources, including laser

. . L. rangefinders, radar, or even computer
and generally the techniques for extracting other primitives are conceptually vision.

ticular are one of the most fundamental geometric primitives to be extracted,

similar.

There are two main challenges with extracting lines from range data. The
first is called segmentation, which is the task of identifying which data points
belong to which line (and inherently also identifying how many lines there are).
The second is fitting, which is the task of estimating the parameters that define a
line given a set of points. For simplicity this chapter will consider line extraction
problems based on two-dimensional range data.

11.1.1 Line Segmentation

The line segmentation problem is to determine how many lines exist in a given
set of data and also which data points correspond to each line. Three popular
algorithms for line segmentation will be discussed, the split-and-merge algorithm,
the random sample consensus (RANSAC) algorithm, and the Hough-transform algo-
rithm.

Split-and-Merge: The split-and-merge algorithm is perhaps the most popular
line extraction algorithm and is arguably the fastest (but not as robust to out-
liers). The concept of this algorithm is quite simple: repeatedly fit lines to sets
of points and then split the set of points into two sets if any point lies more than
distance d from the line. By repeating this process until no more splits occur,

it is guaranteed that all points will lie less than distance d to a line. After this
“split” process is completed, a second step merges any of the newly formed
lines that are colinear. This algorithm is presented in more detail in Algorithm
1. A popular variant of the split-and-merge algorithm is known as the iterative-
end-point-fit algorithm. This algorithm is simply the split-and-merge algorithm
given in Algorithm 1 where the line is simply constructed by connecting the
first and the last points of the set. This approach is shown graphically in Figure
11.1.

Random Sample Consensus (RANSAC): Random Sample Consensus (RANSAC)
is an algorithm to estimate the parameters of a model from a set of data that

may contain outliers (i.e. robust model parameter estimation). Outliers are data
points that do not fit the model and may be the result of high noise in the data,
incorrect measurements, or simply points which come from objects that are un-
related to the current model. For example, a typical laser scan of an indoor en-

PRINCIPLES OF ROBOT AUTONOMY 3

Algorithm 1: Split-and-Merge
Data: Set S of N points, distance threshold d > 0
Result: A list L of sets of points each resembling a line
L« [S]
i+1
while i < len(L) do
fit a line (&, 7) to the set L[i]
detect the point P € L[i] with maximum distance D to the line («,)
if D < d then
| ii+1
else
split L[i] at P into new sets S; and S
Lli+1]+ S,

Merge colinear sets in L

(e} e
[e] o
(e}
0o o
o [e]
o o
o [¢]
o o
[e] [e]
o (o}
o o
o e}
. |
o

Figure 11.1: Iterative-end-point-
vironment may contain distinct lines from the surrounding walls but also points fit variation of the split-and-

from other static and dynamic objects (e.g. chairs or humans). In this case, if the merge algorithm for extracting

goal was to extract lines to represent the walls then any data point correspond- lines from data.
ing to other objects would be an outlier. In general, RANSAC can be applied to

many parameter estimation problems, and typical applications in robotics in-

clude line extraction from 2D range data, plane extraction from 3D point clouds,

and structure-from-motion (where the goal is to identify image correspondences

which satisfy a rigid body transformation). However for simplicity this section

focuses on using RANSAC for line extraction from 2D data.

RANSAC is an iterative method and is non-deterministic (i.e. stochastic or
random). Given a dataset S of N points, the algorithm starts by randomly se-
lecting a sample of two points from S. Then a line is constructed from these two
points and the distance of all other points to this line is computed. A set of in-
liers comprised of all the points whose distance to the line is within a predefined
threshold d is then defined. By repeating this process k times, k inlier sets (and
their associated lines) are generated and the inlier set with the most points is
returned. This procedure is detailed in Algorithm 2 and is also illustrated in
Figure 11.2.

4 INFORMATION EXTRACTION

Algorithm 2: Random Sample Consensus (RANSAC) for Line Extraction
Data: Set S of N points, distance threshold d
Result: Set with maximum number of inliers and corresponding line

while i < k do
randomly select 2 points from S

fit line [; through the 2 points

compute distance of all other points to [;

construct set of points S; with distance less than d to /;
store line /; and set of points ;i < i +1

Choose set S; with maximum number of points

Figure 11.2: Example of the

o 0° RANSAC algorithm, showing
%° four iterations of the algorithm.
° o If the algorithm was terminated
° o, after these four iterations, line
o o

I35 would be returned since it

contains the maximum number

of points.
Due to the probabilistic nature of the algorithm, as the number of iterations

k increases the probability of finding a good solution increases. This approach
is used over a brute force search of all possible combinations of two points since
the total number of combinations is N(N — 1)/2, which can be extremely large.
In fact, a simple statistical analysis of RANSAC can be performed.

Let p be the desired probability of finding a set of points free of outliers and
let w be the probability of selecting an inlier from the dataset S of N points,

which can be expressed as:
inliers

N

Assuming point samples are drawn independently from S, the probability of
drawing two inliers is w? (and 1 — w? is the probability that at least one is an
outlier). Therefore, with k iterations the probability that RANSAC never selects
two points that are both inliers is (1 — w?)¥. Therefore the minimum number of
iterations k needed to find an outlier-free set with probability p can be found by
solving:

1—p=(1-w?f,

for k. In other words, k can be computed as:

log(1—p)
log(1—w?)

=

While the value of w may not be known exactly3, this expression can still be 3 There also exist advanced versions
of RANSAC that can estimate w in an

used to get a good estimate of the number of iterations k that are needed for ; | !
adaptive online fashion.

good results. It is important to note that this probabilistic approach often leads

PRINCIPLES OF ROBOT AUTONOMY 5§

to a much smaller number of iterations than for brute force searching through
all combinations. This can be attributed to the fact that k is only a function of w
and not the total number of samples N in the dataset.

Overall, the main advantage of RANSAC is that it is a generic extraction
method and can be used with many types of features given a feature model. It
is also simple to implement and is robust with respect to outliers in the data.
The main disadvantages are that the algorithm needs to be run multiple times
if multiple features are to be extracted, and there are not guarantees that the
solutions will be optimal.

Hough Transform: In the Hough transform algorithm, each point (x;,y;) of the
set S “votes” for a set of possible line parameters (m, b) (i.e. slope and intercept).
For any given point (x;,y;) the candidate set of line parameters (m,b) that could
pass through this point must satisfy y; = mx; 4+ b, which can also be written as:

b=—mx; + Yi.

Therefore it can be noted that each point in the original space space (x,y) maps
to a line in the Hough space (m, b) (see Figure 11.3). The Hough transform
algorithm exploits this fact by noting that two points on the same line in the
original space will yield two intersecting lines in Hough space. In particular, the
point where they intersect in the Hough space corresponds to the parameters
m* and b* that defines the line passing between the points in the original space
(see Figure 11.4).

Figure 11.3: Each point (x;, ;)
in the original space maps

_—
to a line in the Hough space
which describes all possible
. parameters m and b that would
Original space Hough parameter space : :
generate a line passing through
the point (x;,y;).
b= —mx; +y;
b Figure 11.4: All points on a
line in the original space yield
— (m",b%) lines in the Hough space that
b=—mzx; +y; intersect at a common point.
x m
Original space Hough parameter space

This concept can be applied to line segmentation by searching in the Hough
space for intersections among the lines that correspond to each point (x,y) in
the set S. In practice, this can be done by discretizing the Hough space with a
grid and simply counting for each grid cell the number of lines corresponding

6 INFORMATION EXTRACTION

to (x;,y;) points from S that pass through it. Local maxima among the cells then
can be chosen as lines that “fit” the data set S.

However, performing a discretization of the Hough space requires a trade-off
between range and resolution (in particular because m can range from —oo to
co. Alternatively, it is possible to use a polar coordinate representation of the
Hough space which defines a line as:

xcosa +ysina =7,

where (&,) are the new line parameters. With this representation, a point
(x;,y;) from the original space gets mapped to the polar Hough space («,r)
as a sinusoidal curve (see Figure 11.5). An example of the Hough transform
using the polar representation is given in Figure 11.6.

Yy T o) .
(@0y) r=z;c080+y;sina
—_—
x [0
Original space Hough parameter space

(polar coordinates)

Original space Hough parameter space Original space
(polar coordinates)

11.1.2 Line Fitting

Line segmentation is the process of identifying which data points belong to a
line, and line fitting is the process of estimating parameters of a line for those
corresponding data points. For the line segmentation algorithms previously dis-
cussed (i.e. split-and-merge, RANSAC, and Hough-transform), a line associated
with the segmented data points was also implicitly defined. However, the lines
implicitly defined from the segmentation algorithms may not always be ideal
and so other techniques have been developed to specifically address the line
fitting task.

Line fitting algorithms search for lines that best fit a set of data points. In
almost all cases the problem is over-determined (i.e. there are more data points

Figure 11.5: Representation of
a point (x;,y;) in the Hough
space when using a polar coor-
dinate representation of a line
with parameters « and r.

Figure 11.6: Example of the
Hough transformation using a
polar coordinate representation
of lines.

PRINCIPLES OF ROBOT AUTONOMY 7

than parameters to choose) and noise in the data means that there is not perfect
solution. Therefore one of the most common approaches to line fitting is based
on least-squares estimation, which tries to find a line that minimizes the overall er-
ror in the fit. For this approach it is useful to work in polar coordinates defined
by:

x=pcosf, y=psind,

where (x,) is the 2D Cartesian coordinate of a data point and (p,) is the 2D
polar coordinate. In polar coordinates the equation of a line is given by

pcos(f —a) =r, or xcosa+ysina=r, (11.1)

where « and r are the parameters that define the line. For a visual representa-
tion of these definitions see Figure 11.7.
For a collection S of N points (p;, 6;), the error d; corresponding to the per-

pendicular distance from a point to a line defined by parameters « and r can be Figure 11.7: Representation
computed by: of a line in polar coordinates,

defined by the parameters r and

di = picos(6; —a) —r. (11.2) « which are the distance and

The line fitting task can then be formulated as an optimization problem over angle to the closest point on the

the parameters a and r to minimize the combined errors d; fori = 1,...,N. line to the origin.

In particular, the combined errors are aggregated using a sum of the squared

errors:
N N

S(r,a) = Zdlz =Y (picos(6; —a) —)2 (11.3)
i=1 i=1

This is a classic least squares optimization problem that can be efficiently
solved. However, this cost function generally assumes that each of the data
points is equally affected by noise (i.e. the uncertainty of each measurement is
the same). In some cases it might be beneficial to account for differences in data
quality for each point i, which could give preference to well known points.
Accounting for unique uncertainties in each data point leads to a weighted
least squares estimation problem. In particular, it is assumed that the variance
of each range measurement p; is given by ;. The cost function (11.3) is then
modified to be:

N N
Sw(r,a) =Y wd? = Y wi(p;cos(6; — &) — r)?, (11.4)
i=1 i=1

where the weights w; are given by:
wi

_ 1
= =.
oj

It can be shown that the solution to the optimization problem defined by the

8 INFORMATION EXTRACTION

weighted cost function (11.4) is given by:

r =

Zf\il w;p; cos(0; — a)

Zg\i1 w;j
1 le\il wlplz sin(Zf)i) — ZN21 o Zf\il Z]I\il wlw]plp] COs 9,‘ sin 0] T
a = —atan2 =1 + —.
2 Zf\il wl-p% cos(26;) — Z-Aill o Zf»\il Zjlil wiwjpip;jcos(0; +6;) 2

(11.5)

11.2 Object Recognition

Another high-level information extraction task that is common in robotics is
object recognition. Object recognition is the task of classifying or naming discrete
objects in the world (usually based on images or video). This can be a partic-
ularly challenging task because real world scenes are commonly made up of
many varying types of objects which can appear at different poses and can oc-
clude each other. Additionally, objects within a specific class can have a large
amount of variability (e.g. breeds of dogs or car models). In this section three
common methods for object recognition will be introduced, namely template
matching, bag of visual words, and neural network methods.

11.2.1 Template Matching

Template matching? is a machine vision technique for identifying parts of an 4N. Perveen, D. Kumar, and I. Bhard-
waj. “An overview on template match-

. ing methodologies and its applica-
in a variety of applications, including manufacturing quality control, mobile tions”. In: International Journal of Re-

image that match a given image pattern>. This approach has seen success

robotics, and more. The two primary components needed for template matching search in Computer and Communication
Technology 2.10 (2013), pp. 988995

are the source image I and a template image T S .
. K . . Advanced template matching algo-
Given a source and template image, one approach to template matching is to rithms allow finding pattern occur-
leverage the linear spatial correlation filters discussed in the previous chapter. rences regardless of their orientation
In particular, a naive approach would be to use the normalized template image and local brightness.
as a filter mask in a correlation filter. By applying this filter mask to every pixel
in the source image the resulting output would quantify the similarity of that
region of the source image to the template. This type of approach is sometimes
referred to as a cross-correlation. Another approach based on linear spatial filters
from the previous chapter would be to leverage the similarity filters that com-
pute the sum of absolute differences (SAD) metric for each pixel in the source
image. Regions of the source image similar to the template would correspond
to low SAD scores. The disadvantages of these approaches is that do not handle
rotations or scale changes, which are quite common in real world applications.
One solution to the scaling issue in correlation filter based template match-
ing is to simply re-scale the source image multiple times and perform template

matching on each. This concept, referred to as using image pyramids®, can also SR. Szeliski. Computer vision: algorithms
and applications. Springer Science &

be used to accelerate object search by using a coarser resolution image first to X :
Business Media, 2010

localize the object and then using finer resolution images for actual detection.

PRINCIPLES OF ROBOT AUTONOMY ¢

Building image pyramids can be accomplished in several ways. One naive ap-
proach is to simply eliminate some rows and columns of the image. Another
approach is to first use a Gaussian smoothing filter to remove high frequency
content form the image and then subsample the image. The sequence of images
resulting from this approach is referred to as a Gaussian pyramid.

/ & o & o & o & &

11.2.2 Bag of Visual Words

The key idea behind the bag of visual words? approach is that object representa-
tions can be simplified by considering them as a collection of their subparts (e.g.
a bike is an object with wheels, a frame, and handlebars), and the subparts are
referred to as visual words. In this approach a source image is searched for visual
words, and a distribution of visual words that are found in the image is created
(in the form of a histogram). Object detection can then be performed by com-
paring this distribution to a set of training images. For example, suppose the
source image contains a human face and the recognized features included eyes
and a nose. Then by comparing the distribution to training images, it would
likely be determined that training images that also have eyes and a nose are also
images of faces.

11.2.3 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) represent a relatively new and very
powerful paradigm in object recognition. These approaches were first intro-
duced in the field of computer vision for image recognition in 1989, and since
then have significantly boosted performance in image recognition and classifica-
tion tasks. Research in this field is also still very active.

11.3 Exercises

All exercises for this chapter can be found in the online repository:

Figure 11.8: A traditional image
pyramid: each level has half the
resolution (width and height),
and hence a quarter of the pix-
els, of its parent level. Figure
from Szeliski (2010) .

7 The model originated in natural lan-
guage processing, where we consider
texts such as documents, paragraphs,
and sentences as collections of words -
effectively “bags" of words.

10 INFORMATION EXTRACTION

https://github.com/PrinciplesofRobotAutonomy/AA274A HW3.

11.3.1 Line Extraction

Complete Problem 2: Line Extraction, where you will implement a line extraction
algorithm (Split-and-Merge) to fit lines to simulated Lidar range data.

11.3.2 Template Matching

Complete Problem 4: Template Matching, where you will explore the use of the
classic template matching algorithm, implemented in the open-source OpenCV
library.

11.3.3 Image Pyramids

Complete Extra Problem: Image Pyramids, where you will learn about how tem-
plate matching algorithms can be enhanced through the use of image pyramids
(and image filtering).

Bibliography

[1] N.Perveen, D. Kumar, and I. Bhardwaj. “An overview on template match-
ing methodologies and its applications”. In: International Journal of Research
in Computer and Communication Technology 2.10 (2013), pp. 988-995.

[2] R. Siegwart, I. R. Nourbakhsh, and D. Scaramuzza. Introduction to Au-
tonomous Mobile Robots. MIT Press, 2011.

[3] R.Szeliski. Computer vision: algorithms and applications. Springer Science &
Business Media, 2010.

