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Motion planning and control are fundamental components of robotic auton-
omy1. For example, in order for an autonomous car to accomplish an objective 1 R. Siegwart, I. R. Nourbakhsh, and D.

Scaramuzza. Introduction to Autonomous
Mobile Robots. MIT Press, 2011

(e.g. move from point A to B) it first needs to plan a trajectory and determine
what control inputs (e.g. throttle and steering) will enable it to follow the tra-
jectory. Both of these components require an understanding of the physical
behavior of the robot in order to develop reasonable/actionable plans and con-
trols. In the context of motion planning and control, a robot’s physical behavior
is generally characterized by its dynamics and kinematics.

Definition 1.0.1 (Dynamics). A robot’s dynamics describe the relationship between
forces acting on the robot and changes to the robot’s physical state.

In other words, dynamics can be thought of as the result of Newton’s Second
Law (F = ma) in the context of a particular robot. For example, the dynamics
of an autonomous car would describe the relationship between acceleration and
forces induced by the tires, gravity, aerodynamics, and so on.

Definition 1.0.2 (Kinematics). A robot’s kinematics describe additional restrictions
(constraints) on the robot’s motion that are not induced by forces.

The most trivial example is that the rate of change of the robot’s position
must equal its velocity. More generally a robot’s kinematics describe limitations
on its motion that are a function of the robot’s physical state or geometry. For
example a robotic arm with multiple joints is kinematically constrained since
the rigid connections at each joint only allow rotation about a single axis.

From the preceding descriptions it should be noted that a robot’s dynamics
and kinematics describe limitations on its motion in different ways2. Not only is

2 One simple heuristic for determining
how a particular constraint/relationship
should be classified is to remember that
dynamics are affected by changing the
robot’s mass, while kinematics are not.

it important to identify and describe a robot’s dynamics and kinematics, but a
roboticist should also ask:

1. Do I need to consider all of the dynamics/kinematics? Are they all important
to the robot’s task?



2 mobile robot kinematics

2. Can any of the dynamics/kinematics be simplified/approximated to make
the motion planning and control task easier?

The combination of dynamics and kinematics make up a model of the physical
behavior of the robot, and depending on the robot’s task some models may be
more appropriate than others. In particular the complexity of the model often
needs to be balanced with its accuracy/relevance for the task at hand.

To illustrate this, consider again the autonomous car example. The most ac-
curate model would leverage the car’s dynamics, and would include engine
dynamics, suspension dynamics, tire dynamics, and so on. In particular, incor-
porating tire dynamics is critical to understand the phenomenon of drifting,
which may be important for motion planning and control in autonomous racing
applications. However in other applications it may be more appropriate to sim-
plify the model by replacing the tire dynamics with a simple kinematic constraint
that the tires cannot move laterally (i.e. a “no side slip” constraint).

In fact, in the context of motion planning and control for robotics, models
built entirely from kinematics can be very useful (and much simpler). For this
reason this chapter specifically focuses on robot kinematics, and in particular:

1. How to express the configuration of a robot in terms of general coordinates

2. How to mathematically express kinematic constraints in terms of general
coordinates

3. How to identify different types of kinematic constraints, namely holonomic
and nonholonomic constraints

4. Examples of kinematic models, specifically for wheeled robots

1.1 Generalized Coordinates

A robot’s physical state (also commonly referred to as its “configuration”) can
usually be represented (i.e. quantified) in different ways. The particular choice
of representation defines a finite set of numbers known as generalized coordinates.

Definition 1.1.1 (Generalized Coordinates). Generalized coordinates refer to a set of
coordinates that can completely specify the unique position of your robot.

For example, the wheel rolling on a plane in Figure 1.1 can be represented
by three parameters, x, y, and θ, where (x, y) indicates the position at which the
wheel touches the ground, and θ indicates the direction the wheel is traveling in
the general frame. This set of parameters (x, y, θ) that define the wheel’s config-
uration are generalized coordinates for this system. Note that in practice people
often use “configuration” and “generalized coordinates” interchangeably, even
though the specific choice of generalized coordinates are not necessarily the
only possible representation of the robot’s configuration.

The generalized coordinates are mathematically expressed by the vector
ξ ∈ Rn, where n is the number of generalized coordinates used to describe the
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robot’s configuration. A robot’s motion through time (i.e. its trajectory) is then
expressed by the function

ξ(t) : R→ Rn,

where t denotes time. In the case of the wheel in Figure 1.1 the generalized

coordinate vector would be ξ =
[

x y θ
]>

.

Figure 1.1: Generalized co-
ordinates for a wheel rolling
without slipping on a plane.1.2 Kinematic Constraints

Once a set of generalized coordinates ξ has been identified, they can be used
to mathematically define kinematic constraints that define a robot’s motion. A
more formal definition of general kinematic constraints is first presented:

Definition 1.2.1 (Kinematic Constraints). Let the generalized coordinates of a robot
be denoted as ξ = [ξ1, . . . , ξn]>. Constraints that depend on these generalized coordi-
nates and their velocities are called kinematic constraints and are expressed as

ai(ξ, ξ̇) = 0, i = 1, . . . , k < n (1.1)

where ξ̇ = dξ
dt are the velocities.

Kinematic constraints in robotics applications are often linear with respect
to the generalized velocities. Constraints of this kind are referred to as Pfaffian
constraints and are expressed as

a>i (ξ)ξ̇ = 0, i = 1, . . . , k < n (1.2)

where ai(ξ) ∈ Rn. For notational simplicity these constraints can be compactly
expressed in matrix form as

A>(ξ)ξ̇ = 0, (1.3)

where A(ξ) ∈ Rn×k.

Example 1.2.1 (Pendulum). Figure 1.2 shows a simple pendulum that is as-
sumed to rotate about a fixed pivot point. Let the position of the mass be given
by the Cartesian coordinates (x, y), which can be used as the generalized coordi-
nates for this system (i.e. ξ = [x, y]>). Since the rod connecting the pivot point
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to the mass is assumed to be rigid this implies a kinematic constraint. Assuming
the pivot point is at the origin (0, 0) this constraint can be expressed as

a1(ξ) = x2 + y2 − L2 = 0, (1.4)

where L is the length of the rod. Note that while this does not appear to be a
Pfaffian constraint, it can be equivalently expressed as one. In particular, con-
sider the derivative of the expression with respect to time, which yields the
Pfaffian constraint

da1(ξ)

dt
=

da1(ξ)

dξ
ξ̇ = 2xẋ + 2yẏ = 0, (1.5)

In this particular case a more natural choice of coordinates would simply be
ξ = [θ], which also fully specifies the system’s configuration and eliminates the
need to enforce additional kinematic constraints. In fact, it can be noted that
since x = L sin θ and y = −L cos θ that the above kinematic constraint is trivially
satisfied for all θ.

Figure 1.2: Generalized coordi-
nates for a simple pendulum.

Example 1.2.2 (No-Slip Wheel). Consider again the wheel illustrated in Fig-
ure 1.1 with generalized coordinates ξ = [x, y, θ]>, and assume that there is
a no-slip condition between the wheel and the plane it rolls on. This no-slip
condition means that the velocity component of the wheel in the lateral direc-
tion is always zero. Since the heading of the wheel is given by the unit vector
ev = [cos θ, sin θ]>, the lateral direction can be described by the perpendicular
unit vector ev,⊥ = [sin θ, − cos θ]>.

Since the velocity vector is v = [ẋ, ẏ]>, the no-slip kinematic constraint can be
expressed by the inner product v · ev,⊥ = 0, which is equivalently expressed as

a1(ξ, ξ̇) = ẋ sin θ − ẏ cos θ = 0. (1.6)

Note that this constraint is linear in the generalized velocities (ẋ, ẏ) and there-
fore is a Pfaffian constraint.

1.3 Holonomic and Nonholonomic Constraints

It is useful to further classify different types of kinematic constraints based on
how they restrict the motion of the system. In particular, the most common
classifications for kinematic constraints are holonomic or nonholonomic.

1.3.1 Holonomic Constraints

Holonomic constraints are kinematic constraints that can be expressed as a func-
tion of only the generalized coordinates (without dependence on generalized
velocities). In robotics applications, holonomic constraints generally arise due to
mechanical interconnections, such as rigid links and joints of a robotic arm.
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Definition 1.3.1 (Holonomic Constraints). Constraints that can be expressed in the
form

hi(ξ) = 0, i = 1, . . . , k < n (1.7)

are called holonomic.

Additionally, a holonomic system is a system that is only subject to holonomic
constraints. Note that these constraints can always be equivalently expressed as
Pfaffian constraints of the form (1.2) by differentiating the expression

dhi(ξ)

dt
=

dhi(ξ)

dξ
ξ̇ = a>i (ξ)ξ̇ = 0. i = 1, . . . , k < n (1.8)

However, it is important to note that not all Pfaffian constraints are holonomic.
A Pfaffian constraint is only holonomic if it is integrable to the form (1.7).

Holonomic constraints are a unique subclass of kinematic constraints that
restrict the accessible configurations of the system. In fact, the space of accessible
configurations for a system with n generalized coordinates under k holonomic
constraints will have dimension n− k.

Examples: Consider again the pendulum from Example 1.2.1, where the kine-
matic constraint (1.4) can be expressed as hi(ξ) = 0 (equivalently where the
Pfaffian constraint (1.5) is integrable into the form hi(ξ) = 0). This constraint
restricts the pendulum mass to lie on a circle of radius L, which is a one dimen-
sional subset (n− k = 2− 1 = 1).

Alternatively, consider the wheel from Example 1.2.2, where the kinematic
constraint (1.6) cannot be integrated to yield a constraint of the form hi(ξ) = 0.
In contrast to the pendulum, this system has no restriction on what configura-
tion it can be in as it can potentially move to any point (x, y).

1.3.2 Nonholonomic Constraints

While holonomic constraints are kinematic constraints which restrict the acces-
sible configurations of the system, not all kinematic constraints are holonomic.
In particular, it is possible to have kinematic constraints that do not restrict acces-
sible configurations, but rather restrict the motion between configurations. These
constraints are referred to as nonholonomic constraints.

Definition 1.3.2 (Nonholonomic Constraints). Constraints that can be described in
Pfaffian form, but cannot be integrated to hi(ξ) = 0 form are called nonholonomic.

Additionally, a nonholonomic system is a system that is subject to at least one
nonholonomic constraint. The restriction of instantaneous motion that is in-
duced by a nonholonomic constraint can be interpreted by considering the
Pfaffian form ai(ξ)

> ξ̇ = 0. It is clear that for any coordinate ξ, this constraint
limits the motion (ξ̇) to lie in the null space of ai(ξ)

>.
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Examples: Consider again the wheel example from Example 1.2.2 which has a
nonholonomic constraint

ai(ξ)
> ξ̇ =

[
sin θ − cos θ 0

]
ξ̇ = 0.

The null space of ai(ξ)
> in this case is spanned by the vectors [cos θ, sin θ, 0]

and [0, 0, 1] which suggests that any potential motion must be made up of a
linear combination of these vectors. Intuitively this would be expected because
[cos θ, sin θ, 0] is the unit vector in the direction of rolling, and 0, : 0, 1] would
correspond to the wheel spinning but not rolling.

1.4 Kinematic Models

Once an appropriate set of generalized coordinates ξ ∈ Rn and all relevant
kinematic constraints have been identified for a particular robot the next step is
to develop a kinematic model. In particular these kinematic models will consist
of a set of differential equations of the form ξ̇(t) = G(ξ(t))u(t), where u(t) is
referred to as a system input or control. Given a particular input u(t) and an
initial condition ξ(0) this model will define a trajectory of the system.

Definition 1.4.1 (Kinematic Model). Given a generalized coordinate vector ξ ∈ Rn

and k Pfaffian kinematic constraints A>(ξ)ξ̇ = 0, a kinematic model can be defined as
ξ̇ = G(ξ)u where the column space of G(ξ) ∈ Rn×n−k spans the null space of A>(ξ).
Additionally, for any input u the solutions to the kinematic model are guaranteed to
satisfy the Pfaffian constraints.

Consider k Pfaffian constraints written in matrix form as A>(ξ)ξ̇ = 0 (which
can be a combination of holonomic and nonholonomic constraints). As was
noted earlier these constraints imply that a generalized velocity ξ̇ is only ad-
missible at a configuration ξ if it lies in the n− k dimensional null space of the
matrix A>(ξ). A new matrix, G(ξ) ∈ Rn×n−k can therefore be defined such
that the columns of G(ξ) span the null space of A>(ξ). In other words, for each
column gi of G it holds that A>(ξ)gi = 0. To ensure that the generalized veloc-
ity ξ̇ satisfies the kinematics constraints it is therefore sufficient to require that
ξ̇ = G(ξ)u where u ∈ Rn−k can be any vector. To explicitly show why this is
true, consider any vector u and write ξ̇ = G(ξ)u = ∑n−k

i=1 gi(ξ)ui. When this is
substituted into the Pfaffian constraints the expression becomes

A>(ξ)ξ̇ = A>(ξ)
( n−k

∑
i=1

gi(ξ)ui
)
,

=
n−k

∑
i=1

A>(ξ)gi(ξ)ui,

= 0,

which shows that the kinematic constraints are satisfied.
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Examples: Consider again the wheel example from Example 1.2.2 which has a
single nonholonomic constraint

ai(ξ)
> ξ̇ =

[
sin θ − cos θ 0

]
ξ̇ = 0,

where ξ = [x, y, θ]>. The null space of ai(ξ)
> in this case is spanned by the

vectors [cos θ, sin θ, 0] and [0, 0, 1] and therefore the kinematic model is given
by ẋ

ẏ
θ̇

 =

cos θ 0
sin θ 0

0 1

 [u1

u2

]
. (1.9)

Note that in many cases the control inputs u1 and u2 also have an intuitive
physical meaning. In this problem u1 is the speed at which the wheel is moving,
and u2 is the angular rate at which it rotates.

1.5 Kinematic Models of Wheeled Robots

Robots come in all shapes, sizes, and configurations and with varying forms of
mobility. However, wheeled robots are perhaps the most widely used because
of their high mobility and simple design. For this reason several standard kine-
matic models for different wheeled robot configurations will now be given.

1.5.1 Unicycle Model

The unicycle model of a robot is the simplest kinematic model, and assumes
that the robot can be approximated by a single wheel. In this case the kine-
matic constraints are exactly the same as the wheel rolling on a plane discussed
previously in Example 1.2.2. A simplified diagram showing the generalized co-
ordinates of this model is given in Figure 1.3, and the kinematic model is the
same as (1.9): ẋ

ẏ
θ̇

 =

cos θ 0
sin θ 0

0 1

 [ v
ω

]
, (1.10)

where v is the forward speed of the unicycle and ω is the rate of rotation.
The advantage of the unicycle model lies in its simplicity and its ability to

capture one of the most fundamental behaviors of wheeled robots. Such a
model might be suited for higher level motion planning tasks, such as plan-
ning geometric paths to get a robot from point A to point B. Often times such
a model might be complemented with models of higher fidelity (e.g. dynamics
models) for performing lower level tasks such as control or for refining motion
plans created by the unicycle model.

Figure 1.3: Generalized coordi-
nates for a unicycle.
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1.5.2 Differential Drive Model

The differential drive model is a slight variation on the unicycle model (see
Section 1.5.1) that does not lump all of the wheels together. Instead, this model
assumes two wheels are fixed on a rear shared axle, with a passive wheel that
induces no kinematic constraints in the front. As shown in Figure 1.4 this model
has the same generalized coordinates as the unicycle model (ξ = [x, y, θ]>) but
also includes some geometry of the robot by assuming the width of the rear axle
is denoted by L.

Same as for the unicycle model, this model assumes the wheels roll with-
out slipping. The derivation of the kinematic constraints is therefore similar
to Example 1.2.2. In particular, the heading of each wheel is always given by
ev = [cos θ, sin θ]>, the lateral direction is given by ev,⊥ = [sin θ, − cos θ]>, and
thus the two no-slip kinematic constraints can be expressed as

ṗl · ev,⊥ = 0, ṗr · ev,⊥ = 0,

where ṗl and ṗr are the left and right wheel velocity vectors, respectively. The
next step is to determine how to express ṗl and ṗr as functions of the general-
ized coordinates and generalized velocities. From the geometry of the robot it
can be seen that

pl = [x− L
2

sin θ, y +
L
2

cos θ], pr = [x +
L
2

sin θ, y− L
2

cos θ],

where pl and pr are the positions of the left and right wheels. By taking the
derivative with respect to time the velocities are given by

ṗl = [ẋ− θ̇
L
2

cos θ, ẏ− θ̇
L
2

sin θ], ṗr = [ẋ + θ̇
L
2

cos θ, ẏ + θ̇
L
2

sin θ].

It turns out that after some algebraic manipulation the no-slip kinematic con-
straints simply become:

ṗl · ev,⊥ = ṗr · ev,⊥ = ẋ sin θ − ẏ cos θ = 0,

which means having the no-slip kinematic constraint on both wheels is actually
redundant! This also makes intuitive sense because the wheels are rigidly con-
nected together, so if one wheel cannot move laterally then the other must not
be able to. Additionally, it is noted that this nonholonomic constraint is identical
to the one for the unicycle and so the kinematic model is also identical to (1.10).
However the difference is that the control inputs can now be expressed in a more
realistic form with respect to the actual geometry of the robot.

In particular, instead of the inputs being the forward speed v and body rota-
tion rate ω as in (1.10), the inputs will be chosen to be the left and right wheel
rotation rates, ωl and ωr. A relationship between these sets of inputs can be de-
rived by exploiting the geometry of the robot and the no-slip wheel assumption.
In particular, since the position p = [x, y] can be written as p = 1

2 (pl + pr) the
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velocity vector ṗ = 1
2 ( ṗl + ṗr). From the no-slip wheel assumption the speed

can be expressed as v = ev · ṗ, which can be simplified to

v = ev · ṗ,

= ev ·
1
2
( ṗl + ṗr),

=
1
2
(ev · ṗl + ev · ṗr),

=
1
2
(vl + vr),

=
r
2
(ωl + ωr),

where r is the radius of the wheel and vl and vr are the speeds of the left and
right wheels.

Additionally, the no-slip condition on each individual wheel can be expressed
as vl = ev · ṗl and vr = ev · ṗr which can be expanded to

ẋ cos θ + ẏ sin θ − θ̇
L
2
= vl ,

ẋ cos θ + ẏ sin θ + θ̇
L
2
= vr.

Noting that ẋ cos θ + ẏ sin θ = v these expressions can be written as L
2 θ̇ = vr − v

and L
2 θ̇ = v− vl . Finally, combining these expressions yields

Lθ̇ = vr − vl ,

= r(ωr −ωl).

In summary, a one-to-one mapping between the inputs is given by

v =
r
2
(ωl + ωr), ω =

r
L
(ωr −ωl).

Finally, the differential drive kinematic model is given byẋ
ẏ
θ̇

 =

 r
2 cos θ r

2 cos θ
r
2 sin θ r

2 sin θ
r
L − r

L

 [ωr

ωl

]
. (1.11)

Overall, the complexity of this model over the unicycle model has not in-
creased. However, by leveraging the geometry of the robot the inputs to this
model may be more intuitive for motion planning and control tasks since the
actual control mechanism is generally a motor attached to the wheel axles.

Figure 1.4: Generalized coor-
dinates for a differential drive
robot.

1.6 Dynamic Models

As was discussed in the introduction, mobile robot kinematic models are useful
for describing fundamental physical behavior in a simple way, but they do not
completely capture all real world influences on the robot’s motion. The unicycle
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and differential drive models are examples of kinematic models that are approx-
imations of the true system behavior. In particular they both make the no-slip
wheel assumption, which directly lead to the kinematic constraints. Addition-
ally, the choice of the inputs for the kinematic models ignores other important
dynamics of the robot. In the unicycle model it is assumed the velocity is the
input, but in practice directly commanding a desired velocity is not always
straightforward since the amount of force required to change velocities varies
with the mass of the robot (F = ma). In the differential drive model the inputs
are the rotational rates of the wheels, but again in practice the amount of torque
output required by the motor to change the rotation rate can vary depending on
the robot’s mass as well as other motor dynamics.

One common extension to kinematic models to incorporate dynamics is to
simply add integrators to replace the input variables. The most common ex-
ample of this is to replace a velocity input v with an acceleration input a and
add the integrator v̇ = a. The force that generates the acceleration can then be
considered as the input by using the dynamics equation v̇ = 1

m F where m is
the mass of the robot. Similarly, a rotation rate input ω could be replaced by a
rotational acceleration input. For example, the unicycle model (1.10) could be
extended with integrator states to be

ẋ
ẏ
v̇
θ̇

ω̇

 =


v cos θ

v sin θ

a
ω

α

 . (1.12)

where a is linear acceleration in the forward direction and α is the angular ac-
celeration (which of course could also be written with forces and torques as
inputs).

In summary, factors to consider when deciding whether a certain kinematic
model is sufficient. or if additional kinematics/dynamics are needed. include
the robot’s configuration/geometry and the task at hand (e.g. planning, control,
etc.).
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