
Principles of Robot Autonomy I
Image processing, feature detection, and feature description



From 3D world to 2D images
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• So far we have focused on mapping 3D objects onto 2D images and 
on leveraging such mapping for scene reconstruction
• Next step: how to represent images and infer visual content?



Today’s lecture
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• Aim
• Learn fundamental tools in image processing for filtering and detecting 

similarities
• Learn how to detect and describe key features in images

• Readings
• Siegwart, Nourbakhsh, Scaramuzza. Introduction to Autonomous Mobile 

Robots. Sections 4.3 – 4.5.4.



How to represent images?

10/19/21 AA 274 | Lecture 9



Image processing pipeline
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1. Signal treatment / filtering

2. Feature detection (e.g., DoG)

3. Feature description (e.g., SIFT)

4. Higher-level processing



Image filtering
• Filtering: process of accepting  / rejecting certain frequency 

components
• Starting point is to view images as functions 𝐼: 𝑎, 𝑏 × 𝑐, 𝑑 → [0, 𝐿], 

where 𝐼(𝑥, 𝑦) represents intensity at position (𝑥, 𝑦)
• A color image would give rise to a vector function with 3 components
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Represented as a matrix
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Spatial filters
• A spatial filter consists of

1. A neighborhood 𝑆!" of pixels around the point (𝑥, 𝑦) under examination
2. A predefined operation F that is performed on the image pixels within 𝑆!"
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Linear spatial filters

• Filters can be linear or non-linear
• We will focus on linear spatial filters

• Filter F (of size (2𝑁 + 1)×(2𝑀 + 1)) is usually called a mask, kernel, 
or window
• Dealing with boundaries: e.g., pad, crop, extend, or wrap
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Filtered image Original imageFilter mask



Filter example #1: moving average

• The moving average filter returns the average of the pixels in the mask
• Achieves a smoothing effect (removes sharp features)
• E.g., for a normalized 3×3 mask
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Generated with a 5x5 mask



Filter example #2: Gaussian smoothing 

• Gaussian function

• To obtain the mask, sample the function about its center
• E.g., for a normalized 3×3 mask with 𝜎 = 0.85
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Convolution
• Still a linear filter, defined as

• Same as correlation, but with negative signs for the filter indices
• Correlation and convolution are identical when the filter is symmetric 
• Convolution enjoys the associativity property

• Example: smooth image & take derivative = convolve derivative filter 
with Gaussian filter & convolve the resulting filter with the image 
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Separability of masks

• A mask is separable if it can be broken down into the convolution of 
two kernels 

• If a mask is separable into “smaller” masks, then it is often cheaper to 
apply 𝐹! followed by 𝐹", rather than 𝐹 directly
• Special case: mask representable as outer product of two vectors 

(equivalent to two-dimensional convolution of those two vectors)
• If mask is 𝑀×𝑀, and image has size 𝑤×ℎ, then complexity is
• 𝑂(𝑀#𝑤ℎ) with no separability
• 𝑂(2𝑀𝑤ℎ) with separability into outer product of two vectors
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Example of separable masks

• Moving average

• Gaussian smoothing
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Differentiation
• Derivative of discrete function (centered difference)

• Derivative as a convolution operation; e.g., Sobel masks:
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Note: masks are mirrored
In convolution

Along x direction Along y direction
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Similarity measures
• Filtering can also be used to determine similarity across images (e.g., 

to detect correspondences)
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Sum of absolute differences

Sum of squared differences



Detectors

• Goal: detect local features, i.e., image patterns that differ from 
immediate neighborhood in terms of intensity, color, or texture

• We will focus on
• Edge detectors
• Corner detectors
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Use of detectors/descriptors: examples
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Estimating homographic transformations

Panorama stitching Object detection

Stereo reconstruction



Edge detectors 
• Edge: region in an image where there is a significant change in 

intensity values along one direction, and negligible change along the 
orthogonal direction
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In 1D In 2D

Magnitude of 1st order derivative is large,
2nd order derivative is equal to zero



Criteria for “good” edge detection

• Accuracy: minimize false positives and negatives

• Localization: edges must be detected as close as possible to the true 
edges

• Single response: detect one edge per real edge in the image
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Strategy to design an edge detector

• Two steps:
1. Smoothing: smooth the image to reduce noise prior to differentiation (step 2)
2. Differentiation: take derivatives along x and y directions to find locations with 

high gradients
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1D case: differentiation without smoothing
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1D case: differentiation with smoothing
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Edges occur at 
maxima or 
minima of 𝑠′(𝑥)



A better implementation
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• Convolution theorem:



Edge detection in 2D 

1. Find the gradient of smoothed image in both directions

2. Compute the magnitude                                     and discard pixels 
below a certain threshold

3. Non-maximum suppression: identify local maxima of  
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Derivative of Gaussian filter
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Canny edge detector
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Suppression



Corner detectors

Key criteria for “good” corner detectors
1. Repeatability: same feature can be found in multiple images despite 

geometric and photometric transformations

2. Distinctiveness: information carried by the patch surrounding the 
feature should be as distinctive as possible
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Repeatability
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Without repeatability, matching is impossible



Distinctiveness
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Without distinctiveness, it is not possible to establish reliable 
correspondences; distinctiveness is key for having a useful descriptor 



Finding corners
• Corner: intersection of two or more edges
• Geometric intuition for corner detection: explore how intensity 

changes as we shift a window
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Flat: no changes in 
any direction

Edge: no change along
the edge direction

Corner: changes in 
all directions



Harris detector: example
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Properties of Harris detectors
• Widely used
• Detection is invariant to
• Rotation -> geometric invariance
• Linear intensity changes  -> photometric invariance

• Detection is not invariant to
• Scale changes
• Geometric affine changes 

10/19/21 AA 274 | Lecture 9

Corner

All points classified as edges!



Properties of Harris detectors
• Widely used
• Detection is invariant to
• Rotation -> geometric invariance
• Linear intensity changes  -> photometric invariance

• Detection is not invariant to
• Scale changes
• Geometric affine changes 
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Corner

All points classified as edges!
Scale-invariant detection, such as
1. Harris-Laplacian 
2. in SIFT (specifically, Difference of Gaussians (DoG))



Difference of Gaussians (DoG)
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• Features are detected as local 
extrema in scale and space 



Descriptors
• Goal: describe keypoints so that we can compare them across images or 

use them for object detection or matching

10/19/21 AA 274 | Lecture 9

• Desired properties:
• Invariance with respect to pose, scale, illumination, etc.
• Distinctiviness



Simplest descriptor 
• Naïve descriptor: associate with a given keypoint an 𝑛×𝑚 window of 

pixel intensities centered at that keypoint
• Window can be normalized to make it invariant to illumination 
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Main drawbacks
1. Sensitive to pose
2. Sensitive to scale
3. Poorly distinctive



Popular detectors / descriptors

• SIFT (Scale-Invariant Feature Transformation)
• Invariant to rotation and scale, but computationally demanding
• SIFT descriptor is a 128-dimensional vector!

• SURF
• FAST
• BRIEF
• ORB
• BRISK
• LIFT
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A different paradigm:
using CNNs to detect and describe features
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Next time
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