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Motion planning

Compute sequence of actions that drives a robot
from an initial condition to a terminal condition
while avoiding obstacles, respecting motion
constraints, and possibly optimizing a cost function

e Aim
* Learn about sampling-based motion planning algorithms

* Readings:
 S. LaValle. Planning Algorithms. Chapter 5.
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Configuration space
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Motion planning algorithms

Key point: motion planning problem described in the real-world,
but it really lives in an another space - the configuration (C-)space!

Two main approaches to continuous motion planning:

10/12/21

Combinatorial planning: constructs structures in the C-space that
discretely and completely capture all information needed to perform
planning

Sampling-based planning: uses collision detection algorithms to probe
and incrementally search the C-space for a solution, rather than
completely characterizing all of the (s structure
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Sampling-based motion planning

Limitations of combinatorial approaches stimulated the
development of sampling-based approaches

Abandon the idea of explicitly characterizing Cr e and Cpps
Instead, capture the structure of C by random sampling

Use a black-box component (collision checker) to determine which random
configurations lie in Crypee

Use such a probing scheme to build a roadmap and then plan a path

Reference: LaValle, S. M. Motion planning. 2011.
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Sampling-based motion planning

Pros:
Conceptually simple
Relatively-easy to implement

Flexible: one algorithm applies to a variety of robots and problems

Beyond the geometric case: can cope with complex differential constraints,
uncertainty, etc.

(Mild) cons:

Unclear how many samples should be generated to retrieve a solution
Can not determine whether a solution does not exist
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Outline

- The geometric case
- The kinodynamic case

- Alternative sampling strategies (de-randomized; biased)
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Outline

- The geometric case
. The kinodynamic case

. Alternative sampling strategies (de-randomized; biased)
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Review of sampling-based methods

Traditionally, two major approaches:
- Probabilistic Roadmap (PRM): graph-based

« Multi-query planner, i.e., designed to solve multiple path queries on the same scenario
« Original version: [Kavraki et al., ‘96]

« “Lazy” version: [Bohlin & Kavraki, ‘00]

« Dynamic version: [Jaillet & T. Simeon, ‘04]

« Asymptotically optimal version: [Karaman & Frazzoli, '11]

- Rapidly-exploring Random Trees (RRT): tree-based
« Single-query planner
« Original version: [LaValle & Kuner, ‘01]
« RDT:[LaValle, ‘06]
e SRT:[Plaku et al., ‘05]
« Asymptotically optimal version [Karaman & Frazzoli, '11]
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Probabilistic roadmaps (PRM)

A multi-query planner, which generates a roadmap (graph) G,
embedded in the free space

Preprocessing step:

1. Sample a collection of n configurations X,;;
discard configurations leading to collisions

2. Draw an edge between each pair of
samples x,x" € X,, suchthat|[|[x —x'|| < r
and straight-line path between x and x' is
collision free

Given a query s,t € Crree, CONNect them
to G and find a path on the roadmap
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Rapidly-exploring random trees (RRT)

A single-query planner, which grows atree T , rooted at the start
configuration s, embedded in C¢,.,

Algorithm works in n iterations:

1.
2.
3.

4,

Sample configuration x,.4,4

Generate configuration x,,.,, in direction of
Xrand from Xnear such that XnearXnew & Cfree

Updatetree: T =T U {Xnew> (Xnear> Xnew)}

Every once in a while, set x,.,,,4 to be the
target vertex t; terminate when x,,,, =T

10/12/21
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Rapidly-exploring random trees (RRT)

RRT is known to work quite well in practice

Its performance can be attributed to its
Voronoi bias:

Consider a Voronoi diagram with respect to the
vertices of the tree

For each vertex, its Voronoi cell consists of all

points that are closer to that vertex than to any
other

Vertices on the frontier of the tree have larger
Voronoi cells - hence sampling in those regions
is more likely
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Theoretical guarantees: probabilistic completeness

Question: how large should the number of samples n be? We can say
something about the asymptotic behavior:

Kavraki et al. 96: PRM, with r = const, will eventually (as n — o0) find
a solution if one exists

LaValle, 98; Kleinbort et al., 18: RRT will eventually (as n — o) find a
solution if one exists

* Unless stated otherwise, the configuration space is assumed to be the d-dimensional
Euclidean unit hypercube [0,1]¢, with2 < d <



Theoretical guarantees: quality

Question: what can be said about the quality of the returned
solution for PRM and RRT, in terms of length, energy, etc.?

Nechushtan et al. (2011) and Karaman and
Frazzoli (2011) proved that RRT can produce
arbitrarily-bad paths with non-negligible
probability: for example, RRT would prefer to

take the long (red) way
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Theoretical guarantees: quality

Karaman and Frazzoli in 2011 provided the first rigorous study of
optimality in sampling-based planners:

Theorem: The cost of the solution returned by PRM converges, asn — oo, to
1

)E, where y only depends ond

: 1
the optimum, whenrn, =y (%

 KF11 also introduced an asymptotically optimal
variant of RRT called RRT* (right)

* Result was later updated to [Solovey et al. 2019]:
1

_ log n\d+1
=Y\,

* Now backto 1/d [preprint, Lukyanenko et al. 2021]
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Observations

PRM-like motion planning algorithms
For a give number of nodes n, they find “good” paths
...however, require many costly collision checks

RRT-like motion planning algorithms
Finds a feasible path quickly
...however the quality of that path is, in general, poor

“traps” itself by disallowing new better paths to emerge - RRT* performs
local label correction as samples are added to help remedy this
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Fast Marching Tree Algorithm (FMT™)

Key idea: run dynamic programming on
sampled nodes, skipping any step in
which the attempted connection causes
a collision

lazy DP operator:
c(v) = min  Cost(u,v) + c(u)

w|lu—-v|l<ry,

Laziness introduces “suboptimal” connections,
but such connections are vanishingly rare and
FMT™ is asymptotically optimal

Ratio of # of collisi hecks for EMT* Reference:Janson.etal. Fastharchmg
atlo Ot # Of collision-checks Tor vVersus Tree: A Fast Marching Sampling-Based

PRM* goes to zero! Method for Optimal Motion Planning in
Many Dimensions. 2015
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Sampling-based planning: summary

. Sampling-based planners transform the difficult global problem
into a large set of local and easy problems

- A keyingredientis collision detection, which is conceptually easy,
as it can be solved in the workspace (2D or 3D)

. Local planning (edge validation) is typically performed by dense
sampling of path and collision detection

- Another key ingredient is nearest-neighbor search: given a query
point find its nearest neighbor(s) within a set of points -- also well
studied theoretically and practically
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Outline

. The geometric case
- The kinodynamic case

. Alternative sampling strategies (de-randomized; biased)
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Kinodynamic planning

Kinodynamic motion planning problem:
in addition to obstacle avoidance, paths
are subject to differential constraints

* Therobot operates in the state space X
 To move therobot applies controlu € U

* Motion needs to satisfy the system’s

constraints:
x=f(x,u) forx e X,uelU

Reference: Schmerling and Pavone. Kinodynamic Planning.
2019
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(a) Geometric Planning

(b) Planning with Dubins Car
Dynamics

(c) Geometric Planning

(d) Planning with Simplified
Quadrotor Dynamics




Forward-propagation-based algorithms

RRT can be extended to kinodynamic case in a relatively easy way:
1. Draw arandom state and find its nearest neighbor x4

2. Samplearandom controlu € U and random duration t

3. Forward propagate the control u for t time from x;,04,

l: ’T.init(mmit)
2: for 2 =1to k do
3 Zana — RANDOM_STATE()
Znear < NEAREST _NEIGHBOR (4, T)
t < SAMPLE_DURATION(O, T}0p)
u +— SAMPLE_CONTROL_INPUT(U)
Tnew < PROPAGATE(Zpear, U, 1)
if COLLISION_FREE(Zcar, Tnew) then
T .add_vertex(Zpew) Reference: Kleinbort et al. Probabilistic completeness
10: T .add_edge(Znear, Tnew) of RRT for geometric and kinodynamic planning with

11: return 7 forward propagation. 2018.

2 20 =k Gy oh
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Steering-based algorithms

When efficient online steering subroutines exist, kinodynamic
planning algorithms may take advantage of this domain knowledge

1. Connectsamples by using an
optimal trajectory (steering
problem)

2. Usereachable sets to find nearest
neighbors

Reference: E. Schmerling et al. Optimal Sampling-
Based Motion Planning under Differential
Constraints: the Driftless Case. 2015
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Outline

. The geometric case
. The kinodynamic case

- Alternative sampling strategies (de-randomized; biased)
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Should probabilistic planners be probabilistic?

Key question: would theoretical guarantees and practical
performance still hold if these algorithms were to be derandomized,
l.e., run on deterministic samples?

Important question as derandomization would:
Ease certification process
Ease use of offline computation
Potentially simplify a number of operations (e.g., NN search)
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Designing “good” sequences

£,-dispersion: For a finite set S of points contained in
X c RY, its £,-dispersion D(S) is defined as

D(S) := sup min |[|s — x|,

Key facts:

There exist deterministic sequences with D(S) of order 0(n~1/4), referred to
as low-dispersion sequences

Sequences minimizing £,-dispersion only known ford = 2
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Optimality of deterministic planning

1 V < {Xnit} U SampleFree(n); E < ()
2 forall ve Vdo
Xnear — Near(V\{v}, v, )
for x € Xiear do
if CollisionFree(v, x) then
E « EU{(v,)}U{(x,v)}
end if
end for
9 end for
10 return ShortestPath(Xit, V, E)

OO ~NOO O &~ W

Optimality: Let ¢,, denote the arc length of the path returned with n samples.
Then if

1. Samples set S has dispersion D(S) < yn~'/4 for somey > 0,

2. nY%% - oo,

then lim ¢,, = ¢*, where c™ is the cost of an optimal path

\_ n—>0o J
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Deterministic sampling-based motion planning

- Asymptotic optimality can be achieved with deterministic
sequences and with a smaller connection radius

Deterministic convergence rates: instrumental to the certification
of sampling-based planners

Computational and space complexity: under some assumptions,
arbitrarily close to theoretical lower bound

Deterministic sequences appear to provide superior performance

Reference: Janson et al. Deterministic Sampling-Based Motion Planning: Optimality, Complexity, and
Performance. 2018
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Biased sampling for SBMP

- Potential issue with uniform sampling:
narrow corridors in C-space require many
samples to identify/traverse

- Key idea: bias sampling towards suspected
such challenging regions of C-space

- Biased sampling distributions can be hand-
constructed and/or adapt online (e.g.,
Hybrid Sampling PRM), or learned from
prior experience solving similar planning

‘,.'

M
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References:
Hsu et al. Hybrid PRM sampling with a cost-sensitive adaptive strategy. 2005.
Ichter et al. Learned Critical Probabilistic Roadmaps for Robotic Motion Planning. 2020 (c) Learned Criticality (d) Time (s) vs. Success
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e
Next time: robotic sensors and introduction
to computer vision
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