
AA 274
Principles of Robotic Autonomy

The Robot Operating System (ROS)

Writing Software for Robotics

l Robotics requires very
complex software

l The software you will
deal with in AA274A
has way more moving
parts than what you’ve
dealt with in most
other classes…

9/23/21 2AA 274A | Lecture 2

Writing Software for Robotics

l We deal with the complexity through modularity
l We enable modularity by following the right design pattern: “a

general, reusable solution to a commonly occurring problem within a given
context in software design” – Wikipedia

9/23/21 3AA 274A | Lecture 2

The Pub/Sub Design Pattern

l We divide our software into individual components
l We define “topics” (think chat rooms) where components can

broadcast information to anyone listening
l Each component can:

l Publish: send messages to a topic regardless of whether someone is listening or not

l Subscribe: receive messages on a topic if anyone is sending them regardless of who

9/23/21 4AA 274A | Lecture 2

The Pub/Sub Design Pattern

Note: there are countless ways to IMPLEMENT pub/sub!

9/23/21 5AA 274A | Lecture 2

The Pub/Sub Design Pattern

Note: there are countless ways to IMPLEMENT pub/sub!

9/23/21 6AA 274A | Lecture 2

You already use
Pub/Sub every day!

Where???

Alternatives to Pub/Sub

l Request/Reply (RPC)
l Push/Pull
l Data binding (e.g. shared data members)
l Observers

9/23/21 7AA 274A | Lecture 2

What is ROS?

Depending on who you are talking to…
l An implementation of pub/sub geared towards robotic applications

and that is network-aware
l Lots of open-source software shared by the community:

n SLAM (gmapping, amcl)

n Vision (OpenCV, PCL, OpenNI)

n Arm Navigation (MoveIt)

n Simulation (Gazebo)

9/23/21 8AA 274A | Lecture 2

Are there “Alternatives” to ROS?

l LCM
l Drake
l Player
l YARP
l Orocos
l MRPT
l And many others!

l LCM
l Drake
l Player
l YARP
l Orocos
l MRPT
l And many others!

9/23/21 9AA 274A | Lecture 2

Why is ROS popular in industry?

l Not reinventing the wheel is generally good
l Robotics is hard! It’s great to offload some of the work to smart

people
l ROS is now 12 years

old and still going
strong

9/23/21 10AA 274A | Lecture 2

Why are we using ROS in AA274?

l The closest thing we have to an “industry standard”
l It’s an insurance policy for you (stability, online teaching resources)

9/23/21 11AA 274A | Lecture 2

Why not ROS 2?

• A major overhaul of ROS
• Ecosystem/documentation still not quite as

complete
• Fundamental design pattern (if not

implementation mechanics) still the same
• Keep an eye on it!

http://design.ros2.org/articles/why_ros2.html

9/23/21 12AA 274A | Lecture 2

http://design.ros2.org/articles/why_ros2.html

ROS – Robot Operating System

• 2007-Today

l Stanford AI Robot (STAIR)
l Willow Garage founded by Scott Hassan (eGroups, Google,

Stanford Digital Libraries)

l Willow awards 11 $400k PR2 robots to Universities
l OSRF (Open Source Robotics Foundation) created to maintain ROS

and Gazebo
l ROS is everywhere!

9/23/21 13AA 274A | Lecture 2

ROS Integrates Existing Projects

l OpenCV (computer vision)

l Stage, Gazebo (simulation)

l OpenSLAM (navigation)

l Orocos KDL (arm navigation)

l Many ROS “wrappers” to existing software

9/23/21 14AA 274A | Lecture 2

The Main Software Components

1) Master
2) Nodes

l Nodes talk to each other over topics (think chat rooms). Master
coordinates the whole thing

l Message types: abstraction away from specific hardware
l Camera image
l Laser scan data
l Motion control

9/23/21 15AA 274A | Lecture 2

ROS Node

l A process (typically Python or C++) that runs some computation
l The “fundamental” building block
l Can act as a subscriber, publisher or both
l Nodes talk to each other over “topics”
l Run them using rosrun <package> <node>

l Initialize using rospy.init_node()

Note: nodelets are different. They are not individual processes, they share memory

9/23/21 16AA 274A | Lecture 2

Node Examples
Sensors and actuators are
wrapped in self-contained,
reusable software containers
called “nodes”

9/23/21 17AA 274A | Lecture 2

Higher level operations also
become nodes in the ROS
computational architecture

9/23/21 18AA 274A | Lecture 2

Node Examples

More Concrete Node Examples

l LiDAR node publishes laser scan arrays
l Camera node publishes RGB images (+depth if RGBD) and camera info

(resolution, distortion coefficients)
l Mobile robot controller publishes odometry values (e.g. x-y

coordinates and velocities, +z for UAVs or underwater vehicles)
l Navigation node subscribes to LiDAR and odometry messages,

publishes motion control messages

9/23/21 19AA 274A | Lecture 2

ROS Master

l A process that is in charge of coordinating nodes, publishers and
subscribers

l Also provides a global parameter server
l Exactly one of them running at any time
l Messages do NOT go through Master (i.e. peer-to-peer)
l Nodes will not be able to find each other without Master

9/23/21 20AA 274A | Lecture 2

Sending Messages

l pub = rospy.Publisher()

l msg = ...

l pub.publish(msg)

9/23/21 21AA 274A | Lecture 2

ROS Node - Publisher

9/23/21 22AA 274A | Lecture 2

Monitoring Messages

l You can check if you are sending messages using the rostopic
command line tool:

l rostopic list – lists all the active topics

l rostopic echo <topic> – prints messages received on <topic>

l rostopic hz <topic> – measures topic publishing rate

9/23/21 23AA 274A | Lecture 2

Receiving Messages

l rospy.Subscriber("chatter", String, callback)

l def callback(msg): …

(in C++ need to call spinOnce(), not in Python)

9/23/21 24AA 274A | Lecture 2

ROS Node - Subscriber

9/23/21 25AA 274A | Lecture 2

ROS Launch Files

l Simple XML files that allow you to
n Launch multiple nodes at once

n Set parameters for those nodes

n Start Master

l roslaunch <package> <file>.launch

9/23/21 26AA 274A | Lecture 2

ROS Launch File Example

<launch>

<!-- Start the talker node -->

<node name="talker" pkg="aa274" type="talker.py" output="screen">

<param name="rate" value="5"/>

</node>

</launch>

9/23/21 27AA 274A | Lecture 2

A Case Study

• Edge detection in camera images

Node 1 – Camera Driver
Subscribes to: Nothing
Publishes: Camera images

Node 2 – Edge Detection
Subscribes to: Camera images
Publishes: Image with edges

Node 3 – image_view
Subscribes to: Camera images
Publishes: Nothing

Node 4 – image_view
Subscribes to: Image with edges
Publishes: Nothing

9/23/21 28AA 274A | Lecture 2

A Case Study

l Edge detection in camera image
l rqt_graph

9/23/21 29AA 274A | Lecture 2

ROS Launch File for Edge Detection
<launch>
<arg name="video_device" default="/dev/video0" />

<include file="$(find aa274)/launch/usbcam_driver.launch">
<arg name="video_device" value="$(arg video_device)" />

</include>

<node name="image_view_1" pkg="image_view" type="image_view">
<remap from="image" to="/camera/image_color" />
<param name="autosize" value="true"/>

</node>

<node name="image_view_2" pkg="image_view" type="image_view">
<remap from="image" to="/edge_detection/image" />
<param name="autosize" value="true" />

</node>

<node name="edge_detection" pkg="opencv_apps" type="edge_detection">
<remap from="image" to="/camera/image_color" />
<param name="debug_view" value="false" />

</node>
</launch>

9/23/21 30AA 274A | Lecture 2

Developing with ROS

l Catkin workspace: a directory that contains all your ROS development
l It sets the right environment variables
l It knows how to compile your nodes (using cmake which in turn uses

a compiler)

The commands you need to know:

l mkdir -p ~/catkin_ws/src

l cd ~/catkin_ws

l catkin_make

9/23/21 31AA 274A | Lecture 2

ROS Packages

l The basic organization structure for your nodes
l Usually corresponds to a “functionality” (e.g. a SLAM package)
l Can contain code for multiple nodes
l Directory structure:

The command you need to know:
catkin_create_pkg <name> roscpp rospy std_msgs

9/23/21 32AA 274A | Lecture 2

Debugging

l rospy.loginfo()

l rqt_console

l rosbag record <topic>

l rosbag play file.bag

l pdb – Python Debugger
l import pdb

l pdb.set_trace()

9/23/21 33AA 274A | Lecture 2

Creating Custom Messages

l Write message definitions (.msg) that are language agnostic
l ROS generates the right files so that roscpp and rospy can use your

message
l rosmsg show student

[aa274/Student]:
string name_first
string name_last
uint8 age
uint32 grade

9/23/21 34AA 274A | Lecture 2

ROS Services

l A different way for nodes to pass messages to each other
l Request/Response scheme (not Pub/Sub!)
l Examples:

l Turn a light or LED on or off

l Assign a name to a face and retrain face recognizer

l Spawn a new model in the Gazebo simulator

9/23/21 35AA 274A | Lecture 2

The Parameter Server

l Parameters are stored under namespaces; e.g.
n /move_base/local_costmap/height

n /usb_cam/framerate

n /gazebo/time_step

l Setting and getting parameters:
l rosparam set param_name param_value

l param_value = rospy.get_param("param_name")

l NOTE: Setting a parameter does not affect a running node!

9/23/21 36AA 274A | Lecture 2

Dynamic Reconfigure

l Some nodes provide dynamically changeable parameters
n rosrun rqt_reconfigure rqt_reconfigure

9/23/21 37AA 274A | Lecture 2

URDF

l Universal Robot Description Format
l An XML file that describes the kinematic chain of your robot

9/23/21 38AA 274A | Lecture 2

Gazebo

l Same code that will run in production
l Physics is mostly accurate

9/23/21 39AA 274A | Lecture 2

Some more libraries you will hear about...

l TF: coordinate frame transform library
l Actionlib: processes with goals and feedback
l dynamic_reconfigure: making nodes configurable on the fly

9/23/21 40AA 274A | Lecture 2

Getting help

l ROS wiki (http://wiki.ros.org/)
l Github
l Stack Overflow
l The Construct / Robot Ignite Academy
l Google :)

9/23/21 41AA 274A | Lecture 2

Next time

• Motion control

9/23/21 42AA 274A | Lecture 2

