
Principles of Robot Autonomy I
Finite state machines

Logistics

• It’s the final (project) stretch!
• All sections are open office hours for project discussion with TAs

• Final project demos: Wednesday, December 8th, 8:30 – 11:30am
• Simulation server should be more stable now, but perhaps see “Running ROS

locally” (EdStem post)

AA 274 | Lecture 19 212/2/21

https://edstem.org/us/courses/14340/discussion/660985

The see-think-act cycle
Localiza(on
Map	Building

Decision	making
Mo(on	planning

Informa(on
extrac(on

Sensing

raw	data

environmental	model
local	map

posi(on
global	map

Trajectory	
execu(on

Actua(on

actuator	
commands

trajectory

Real	world
environment

Knowledge Mission	goals

See-think-act

AA 274 | Lecture 19 312/2/21

Today’s lecture
• Aim
• Introduce and formalize the concept of Finite State Machines (FSMs)
• Discuss their relevance, strengths and limitations
• Introduce tools to allow you to use them effectively

• Readings
• Chapter 4 of Leslie Kaelbling, Jacob White, Harold Abelson, Dennis

Freeman, Tomás Lozano-Pérez, and Isaac Chuang. 6.01SC Introduction to
Electrical Engineering and Computer Science I. Spring 2011. Massachusetts
Institute of Technology: MIT OpenCourseWare.

12/2/21 AA 274 | Lecture 19 4

Motivation

12/2/21 AA 274 | Lecture 19 5

Finite State Machines

Definition: A computational model for systems whose output depends
on the entire history of their inputs.

*A finite state machine is a modeling framework, NOT an algorithm
(similar to Markov decision processes, probability densities, factor

graphs etc.)*

12/2/21 AA 274 | Lecture 19 6

Finite State Machines in practice

• In practice, used in many different ways
• Synthetically (specifies a program)

• E.g. a product manager and an engineer specifies how an ATM machine should
“behave” before starting its implementation

• Analytically (describe the behavior of a combination of systems)
• E.g. two self-driving cars could be modeled as FSMs. An engineer could try to see if

they might end up stuck in some infinite loop at an intersection
• Predictively (to predict interaction with an environment)

• A self-driving car could have an internal model of a pedestrian as an FSM and use it to
figure out how it should behave around it

12/2/21 AA 274 | Lecture 19 7

Why are we teaching FSMs?

• For the practitioner: designing the extremely complex state
machines required to fly drones, drive self-driving cars or operate
warehouse robots is still one of the most time-consuming/difficult
tasks faced by companies…

• How do we handle the failure of a combination of sensors
gracefully?
• How do we negotiate an intersection?
• How do I get my turtlebot to start backtracking after a collision?

12/2/21 AA 274 | Lecture 19 8

Why are we teaching FSMs?

• For the researcher: It’s a fundamental building block of how we
understand computation, and still relevant to research today...

12/2/21 AA 274 | Lecture 19 9

Hudson, Drew A., and Christopher D. Manning. "Learning by abstraction: The neural
state machine." arXiv preprint arXiv:1907.03950 (2019).

Mathematical definition

• Sets:
• A set of states 𝑆
• A set of inputs 𝐼, called the input vocabulary
• A set of outputs 𝑂, called the output vocabulary

• Maps:
• Next-state function that maps input and the state to the next state
𝑛 𝑖!, 𝑠! → 𝑠!"#
• Output function 𝑜 𝑖!, 𝑠! → 𝑜!

• An initial state 𝑠!

12/2/21 AA 274 | Lecture 19 10

Graphical representation

12/2/21 AA 274 | Lecture 19 11

𝑠!

𝑠"

𝑠#

𝑆: 𝑠!, 𝑠", 𝑠#
I: {𝑖!, 𝑖", 𝑖#}
O: {𝑜!, 𝑜"}

• Given the sets (𝑆, 𝐼, 𝑂), it is common to express the maps (𝑛, 𝑜) by
using a graph

Graphical representation

12/2/21 AA 274 | Lecture 19 12

𝑠!

𝑠"

𝑠#

𝑖!

𝑖!

𝑖"
𝑖#

The transition (next-state)
map is represented by arrows
between states, with their
associated input alongside it

Graphical representation

12/2/21 AA 274 | Lecture 19 13

𝑠!

𝑠"

𝑠#

𝑖!, 𝑜"

𝑖!, 𝑜!

𝑖", 𝑜"
𝑖#, 𝑜!

The output map is written
alongside each transition

Example: parking gate control

12/2/21 AA 274 | Lecture 19 14

The gate can be in one of three positions: ‘top’, ‘middle’ or ‘bottom’
A sensor tells the gate if a car is waiting in front of it
A sensor tells the gate if a car has just passed through it
The gate can take the following actions: raise the gate, lower the gate, no
operation (nop).

We want the following behavior:
• If a car wants to come through, need to raise the arm to ‘top’ position
• The gate has to stay there until the car has driven though the gate
• The gate has to go back down after the car has gone through

Example: parking gate control

12/2/21 AA 274 | Lecture 19 15

• States: ‘waiting’, ‘raising’, ‘raised’, ‘lowering’

• Input: ‘no car at gate’, ‘car at gate’, ‘gate at top’, ‘not
gate at top’, ‘gate at bottom’, ‘not gate at bottom’, ‘car
just exited’, ‘not car just existed’

• Output: ‘raise’, ‘lower’, ‘nop’

Example: parking gate control

12/2/21 AA 274 | Lecture 19 16

• Transitions

Example: parentheses balancing

• We want to design an automata that can read a string of text of any
length and say whether or not the parentheses in the string are
balanced or not
• Balanced: ”1 + (2 + 3 – (4 * 5))”
• Not balanced: “1 + (2 + 3 – 4 * 5))”

• “… a string of text of any length…”

• A robot that can accomplish such a task would need an infinite
number of states… and cannot therefore be represented by a finite
state machine

12/2/21 AA 274 | Lecture 19 17

FSM in the bigger picture of computation

• In terms of computational power, (deterministic) finite state
machines are actually somewhat low on the totem pole of
automata… with Turing Machines somewhere close to the top.

12/2/21 AA 274 | Lecture 19 18

Turing Machine
Pushdown automaton

Finite State Machine
Combinatorial Logic

A Turing Machine
could solve our
parentheses
balancing
problem!

Architecture

• The architecture of finite state machines can become quite complex
• Additional states can generate an exponential number of transitions
• Strategies to keep the architecture tractable:

1. Reduction of redundant states
2. Hierarchical finite state machines
3. Composition using common patterns

12/2/21 AA 274 | Lecture 19 19

Finite State Machine optimization

• Algorithms exist to identify and combine states that have equivalent
behavior
• Equivalent states:
• Same output
• For all input combinations, state transition to same or equivalent states

• Sketch of polynomial time algorithm:
• Place all states in one set
• Initially partition set based on output behavior
• Successively partition resulting subsets based on next state transitions
• Repeat until no further partitioning

12/2/21 AA 274 | Lecture 19 20

Finite State Machine optimization

12/2/21 AA 274 | Lecture 19 21

Sequence detector for 010 or 110

Hierarchical Finite State Machines

• Some states might not be equivalent, but it might still be beneficial
to group closely related ones together

• This leads to the following two concepts:
• Super-states (groups of states)
• Generalized transitions (transitions between super-states)

12/2/21 AA 274 | Lecture 19 22

Composition

12/2/21 AA 274 | Lecture 19 23

• Cascade
• Requirement: output vocabulary of m1 must match input vocabulary of m2
• Resulting state: concatenation of states
• Resulting input: input of m1
• Resulting output: output of m2

Composition

12/2/21 AA 274 | Lecture 19 24

• Parallel
• Requirement: Input vocabularies must be the same
• Resulting state: concatenation of states
• Resulting input: same as input vocabulary of component machines
• Resulting output: concatenation of outputs

Composition

12/2/21 AA 274 | Lecture 19 25

• Feedback
• Requirement: Input and output vocabularies must be the same
• Resulting state: same
• Resulting input: partial input
• Resulting output: same

Implementation

• Aim of this section
• Understand that you do NOT have to use anything in particular in order to

implement a FSM
• Understand that there are however common ways to implement finite state

machines
• Grow awareness of tools available to help you build and analyze them

12/2/21 AA 274 | Lecture 19 26

Implementation

• A common strategy is to exploit Object Oriented Programming
(OOP) and implement a class that corresponds to your finite state
machine
• The class keeps track of which state the FSM is in (e.g. in a variable)
• A loop repeats at some fixed rate
• Each loop, the FSM input is read (e.g. sensors, clock)
• The current state is executed (as an if/else block)
• Actions that need to be taken (e.g. set actuator setpoints)
• Transition to next state (e.g. state variable updated)

12/2/21 AA 274 | Lecture 19 27

Example implementation

• PX4: in many ways the leading open source flight software for
drones

12/2/21 AA 274 | Lecture 19 28

Example implementation

• Commander.cpp

• state_machine_helper.cpp

12/2/21 AA 274 | Lecture 19 29

Example implementation

12/2/21 AA 274 | Lecture 19 30

• 14 open issues that involve a “state machine”…

Example implementation

• Your very own navigator.py!

12/2/21 AA 274 | Lecture 19 31

ROS State Machines: SMACH

• A ROS tool that allows you to synthesize FSMs more easily
• Provides visualization tools
• Support hierarchical state machines
• Enables easy composition
• See http://wiki.ros.org/smach/Tutorials/Getting%20Started

12/2/21 AA 274 | Lecture 19 32

http://wiki.ros.org/smach/Tutorials/Getting%20Started

SMACH: Basic Syntax

• Two main components:
• SMACH State
• SMACH Container (e.g. FSM)

12/2/21 AA 274 | Lecture 19 33

SMACH: Basic Syntax

• SMACH State
• The basic state abstraction. Corresponds 1:1 with the FSM states described

earlier
• Inherit from smach.State and must implement two functions:

• __init__
• execute

• execute should return ‘outcomes’

12/2/21 AA 274 | Lecture 19 34

SMACH: Basic Syntax

12/2/21 AA 274 | Lecture 19 35

SMACH: Basic Syntax

• SMACH Container
• Roughly corresponds to the idea of a finite state machine, with variations.
• You are most likely to use the container smach.StateMachine
• States can be added to containers
• Containers can be composed

12/2/21 AA 274 | Lecture 19 36

SMACH: Basic Syntax

12/2/21 AA 274 | Lecture 19 37

SMACH: Basic Example

12/2/21 AA 274 | Lecture 19 38

SMACH: Basic Example

12/2/21 AA 274 | Lecture 19 39

SMACH: Basic Example

12/2/21 AA 274 | Lecture 19 40

SMACH: Basic Example

12/2/21 AA 274 | Lecture 19 41

SMACH: Composition

• The composition operations described earlier (cascade, parallel,
feedback) are also possible in SMACH

Cascade -> smach.Sequence
Parallel -> smach.Concurrence
Feedback -> smach.Iterator

12/2/21 AA 274 | Lecture 19 42

SMACH: Visualization

• The package smach_visualizer allows you to easily inspect
and monitor your state machine

12/2/21 AA 274 | Lecture 19 43

DEMO: AA274 Navigator using SMACH

12/2/21 AA 274 | Lecture 19 44

Thanks for a great quarter!

12/2/21 AA 274 | Lecture 19 45

