Principles of Robot Autonomy |

Multi-sensor perception and sensor fusion |

Daniel Watzenig

(23 Stanford ASEV
&%/ University

Autonomous Systems Lab



Today’s lecture

e Aim
* Introduce the topic of multi-sensor perception and sensor fusion
 Learn about Kalman filtering applied to sensor fusion
* Devise a sensor fusion algorithm for position estimation (low-level fusion)

* Readings
e F. Gustafsson. Statistical Sensor Fusion. 2010.

* D. Simon. Optimal State Estimation: Kalman, H,,, and Nonlinear
Approaches. 2006.
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Multi-sensor approach

* Localization
* Environment

Sensing " Vebhicle control

Localization Localization & Environment & Planning &
Sensors map provision self perception control
-

b !

| Actuators
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Multi-sensor perception

19.9m/2.5m
(0.2km/h)

13.6m/-3.1m
(-0.4km/h)

11/11/2021 AA 274 | Lecture 16 4



Multi-sensor perception

« Uncertainty reduction

Uncertainty - Radar

Uncertainty after Fusion
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Multi-sensor perception

Sensor fusion of camera and long-range radar

[Source: Baselabs, 2017]



Using stationary sensors

P
\

\

700-800m
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Single-sensor vs multi-sensor perception

* Drawbacks of single-sensor perception
* Limited range and field of view
* Performance is susceptible to common environmental conditions
* Range determination is not as accurate as required
 Detection of artefacts, so-called false positives

* Multi-sensor perception might compensate these, and provide:
* Increased classification accuracy of objects

Improved state estimation accuracy

Improved robustness for instance in adverse weather conditions

Increased availability

Enlarged field of view
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Sensor fusion taxonomies

Fusion level
taxonomy

Fusion
classes
taxonomy

Data-related
taxonomy

Architectural
taxonomy
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Fusion level taxonomy

0.9 0.5 0.2 0.9 0.9 0.9

* Fusion is typically divided into three f f :
levels of abstraction: i = — T

f Interpretation

* Low-level fusion T 1‘ TAbStraCtion
S |—| 4 N
* Intermediate-level fusion < TL I T: . JtL
. . Data processing
* High-level fusion — = =
. Th tively fuse: - o
ey respectively rtuse: f T Signal Fusion Signal processing
* Signals |
* Features and characteristics
° Decisions f Measurement i

Schematic depiction of fusion levels (Stiiker, Heterogene Sensordatenfusion
zur robusten Objektverfolgung im automobilen Strafsenverkehr, 2016)
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Fusion class taxonomy

* Competitive fusion

* isused when redundant sensors measure
the same quantity, in order to reduce the
overall uncertainty

* Complementary fusion

* isused when sensors provide a
complementary information about the
environment, for instance distance
sensors with different ranges

» Cooperative fusion

* isused when the required information
can not be inferred from a single sensor
(e.g. GPS localization and stereo vision)
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Complementary Cooperative
Fusion Fusion
e.g.. Iriangulation

Achicvements Completeness Emerging Views

o Competitive
Fusion Fusion
Lk \ 2

Sensors AD
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Architectural taxonomy

* The centralized architecture is theoretically optimal, but scales badly with respect to
communication and processing

* The decentralized architecture is a collection of autonomous centralized systems,
and has the same scaling issues

* The distributed architecture scales better, but can lead to information loss because
each sensor processes its information locally

Centralized architecture

Distributed architecture

| Alignment
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Data-related taxonomy

* The most interesting data-related fusion aspect is the inherent
imperfection of the sensory data

* The data-related taxonomy provides us with a checklist of
underlying data issues and how to deal with them

11/11/2021

Data-related Fusion Aspects

Imperfection Correlation Inconsistency Disparateness
l | [ |
Uncertainty Imprecision Granularity Conflict Outlier Disorder
Vagueness Ambiguity Incompleteness
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Data-related taxonomy

* Sensory data makes a statement about the environment
* "The distance to the nearest caris 35.12m”
* Duetotheinherent data imprecision, we have to deal with:

* Uncertainty: The distance to the nearest car is more than 20 m with
80% probability

* Vagueness: The distance to the nearest car is more than 20 m with
80% probability, and we are 90% confident in this statement

* Ambiguity
* Incompleteness
* The underlying data can contain multiple imperfections at once
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Bayesian statistics in multi-sensor data fusion

« Basic premise: all unknowns are treated as random variables and the
knowledge of these quantities is summarized via a probability
distribution

* Thisincludes the observed data, any missing data, noise, unknown parameters,
and models

 Bayesian statistics provides
* aframework for quantifying objective and subjective uncertainties

» principled methods for model estimation and comparison and the classification
of new observations

* a natural way to combine different sensor observations
* principle methods for dealing with missing information
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Sensor fusion —a simple example

* Problem: determine the distance to n objects using measurements
from two sensors

* Assumptions:
* Both sensors have the same field of view
* First sensor has a higher precision than the second sensor
* Consider the simplest case (n=1)

* How to fuse these measurements properly?
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Sensor fusion —a simple example

 Sensors provide redundant measurements of the same physical
quantity (distance)

* Toincorporate the precision information > measurements are
assumed to be normally distributed random variables

* Specifically, the univariate Gaussian distributions are:

. 1 (z— p1)?
() = o) Fexp (3R )~ Ao
1

dy(z) = (2705) ™7 exp (1 @ _52)2) ~ N (2, 03)

2 05
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Sensor fusion —a simple example

* Assumption from before:
* First sensor has a higher precision than the second sensor

 This can be captured as: ¢ < o5
 Problemis to find d(z) ~ N (u, %)
* Theideais to combine the previous Gaussian distributions

d(z) = di(z) - da(x) = (4n0%03) "7 exp (_1 ((m 7 51)2 i . _52)2>)

2 o1 b
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Sensor fusion —a simple example

* Re-arranging the expression in the exponent and dividing the
numerator and denominator by (o + 0%):

2%

_I_
2 )
g7 o

1 ((a: —m)® | (- u2>2) 1 (@t 2om ot et (oud totd)

* To obtain an expression of form x? — 2ux + u? = (x — u)? in the
numerator, it is necessary to add and subtract the square of the second
term
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Sensor fusion —a simple example

2 2
2 2,u1cr§—|—,ugafx + (Mlag‘l‘ﬁtQU%) . (M105+ﬂ20%) + ,u%oé—l—,uéaf

X 5T o 5T 5T o 5T 5

1 01—|—02 o1 +c72 o7 —|—02 01 —1—02
2 92
2 ‘721 ‘722
o1 —i—cr2

* The expression in the exponent becomes

l(x—p) —pl+s  1@—p’  p2-s

2 o2 T2 g2 * 202
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Sensor fusion —a simple example

* Putting everything together leads to the final distribution which
represents the fused information

1) = s o (4 4 )

2 L 2
= (2wo109) " exp (“2028) exp ( %(waﬁ) )
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Sensor fusion —a simple example

* Mean value and variance are —_

2 2 e
_ H105 1 207
- 2 2 os|
o1 + 05 N |
2 2 =l |
2 o 0-1 * 0-2 02f 1
c T 2 ig2 ..
1 2 2 2 23 24 25 26 27 28 29 30 3 32

distance [m]

* The fused value is the weighted average of the measurements
* The weighting favors the sensor with higher precision
* The overall uncertainty decreases
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Kalman filter (KF) —again

* Assumption #1: linear dynamics

T = AtTi—1 + Biug + €

e i.i.d .process noise €, is N (0, R¢)
* Assumption #1 implies that the probabilistic generative model s
Gaussian

i 1 _
p(xt | us, x4—1) = det(2wRy) 3 exp (—2(:1:1; — Ay 1 — Btut)TRt 1(:615 — Aye 1 — Btut))

11/11/2021 AA 274 | Lecture 16 23



B
Kalman filter (KF)

* Assumption #2: linear measurement model

2t — tht + 5t

* i.i.d. measurement noise &, is N (0, Q)
* Assumption #2 implies that the measurement probability is
Gaussian

Bz | ) = det(Qﬂ'Qt)_% exp (—;(zt — Cta*:t)TQ;l (2t — Ct:L‘t))
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B
Kalman filter (KF)

« Assumption #3: the initial belief is Gaussian

1

bel(xg) = p(xg) = det(Q?TE())_% exp (—2(.’130 — uo)Tzal(iCﬂ — #0))

 Key fact: These three assumptions ensure that the posterior bel(x;)
is Gaussian for all t, i.e., bel(z¢) = N (e, 3¢)

* Note:
* KF implements a belief computation for continuous states
 Gaussians are unimodal = commitment to single-hypothesis filtering
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Kalman filter: algorithm revisited

Prediction bel(x¢-1)
Project state ahead ( : \
My = Atﬂt—l + Biuy Data: (ﬂt—la Et—l)a Uty <t
Project covariance ahead Result: ([l;t, Et)
= T B
X = ApXe1Ap + Ry Prediction: &t — At#t—l + Biuy ;
| bel(xe) Y = AiXi 1 A] + Ry;
Correction
Compute Kalman gain Kt s Etcg(ctztcg kil Qt)_1§
S T T = C tion: s e i
Kt = Z?tct (_CtEtCt + Qt) bz;zii)lon Ut = /Jt —+- Kt(Zt :C”Jt),
Update estimate with new measurement Et L (I o Ktct)zt'
— )

pe = iy + Ki(ze — Cifiy)

Update covariance Return (ﬂtg Et)
Et = (I — KtCt)ft \—Y—/
bel(x;)
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Sensor fusion example

* Problem: Estimate position, velocity, and
acceleration of a vehicle from noisy position
and acceleration measurements

* Assumptions:
* Single track model for the vehicle

* Lidar provides position measurements with low
precision

* GPS provides position measurements with high
precision

* IMU provides acceleration measurements
* Sensor fusion is done using the Kalman filter
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Sensor fusion example: Motion model

T
» Statevector: i = [p v al
* Change of the state over time is captured by the motion model

T2
= + Tsvi—1 + ——as—1 + €
Pt — Pt—1 sUt—1 9 t—1 pt
Vi = Vi1 +Tsar_1 + €y
At = At—1 T €qt

* T, represents sampling time
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Sensor fusion example: Motion model

* The motion model can be represented in matrix form

- - Tg - _ - - -
p 1 T 5 p Cp
vy =10 1 1T (% + | €y
| 0 0 1] (& t—1 Caly
- J \ . J -
State vector State transition Process noise
matrix

p= A1+ €
where €; is independent process noise distributed as N (0, R;)
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Sensor fusion example: Measurement model

* The measurement model defines a mapping from the state space to the
measurement space

* For this example, two possible fusion scenarios will be considered:
1. Lidar + IMU

2. Lidar + GPS + IMU

* In the first scenario, only measurements from Lidar and IMU are
available

« Assumption: Lidar provides low precision measurements (noisy data)

* In the second scenario, high precision GPS measurements are also
available
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Sensor fusion example: Measurement model

* First scenario - measurement model is given by

P
Plidar L I 0 O 5lida/r
= V —|—
Aimu n 0 0 1 5imu 4
L t
Measurement Measurement State Measurement
vector matrix vector noise
2t = Oy + 0y

where §; is independent measurement noise distributed as NV (0, Q;)
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Sensor fusion example: Initialization

* Choosing the initial state vector u, - depends on - -
available information

« If there is a-priori knowledge - initialization is done with known values M0
* Ifthereis a lack of information - initial state is chosen to be zero 0
* For this example the initial state vector is set to zero

|
-

* Choosing the initial covariance matrix Z, - should be

defined based on the initialization error 1 0 0]
« If theinitial state is not very close to the correct state - X, will have =
large values 20=10 10
* Iftheinitial state is close to the correct state - X, will have small values _0 0 1_
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Sensor fusion example: Noise model tuning

* The process noise covariance matrix R; - describes the confidence in the
system model

» Small values indicate higher confidence - predicted values are more
weighted

* Large values indicate lower confidence - measurements become dominant

* The measurement noise covariance matrix Q; - describes the confidence
in the measurements

* Has a similar interpretation as R,
* Both matrices need to be symmetric and positive definite

0.05 0 0 2 0
Ry=| 0 0001 0 Qt = { e 2 ]
0 0 0.05 v
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Sensor fusion example: Algorithm

* Estimation results are obtained using the prediction-correction

scheme
Correction
Projectitate_arlzad . K; = itCtT(CtEtCEF q. Qt)_l
P = ddpi T Diuy Update estimate with new measurements
Pro;ecicovarlance ahead . [y = ﬁt + Kt(zt _ Ctﬁt)
Et — Atzt—lAt + Rt Update covariance

- ¥, = (I — K;Cy) X
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Sensor fusion example: Position estimation

Position

————— Ground truth

p [m]

2 | | | | | | | | |
0 2 4 6 8 10 12 14 16 18

t[s]
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Sensor fusion example: Position estimation

Position

0 2 4 6 8 10 12 14 16 18
t[s]
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Sensor fusion example: Position estimation

Position

Lidar data
Estimate
————— Ground truth

Estimate is very noisy because of the Lidar
measurements

t[s]
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|—-—-— Ground truth |

Velocity estimation
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Sensor fusion example: Velocity estimation

Velocity

v [m/s]

18

| |

6 8 10 12 14 16
t[s]
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Sensor fusion example

Acceleration

—=—==— Ground truth |
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Sensor fusion example: Acceleration estimation

IMU data
6~ —=—== Ground truth

0 2 4 6 8 10 12 14 16 18
t[s]
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Sensor fusion example: Acceleration estimation

Acceleration

. IMU data

6~ Estimate
—==—== Ground truth

4+

2 L

E

0

2+

i

-6

0 2 4 6 8 10 12 14 16 18

t[s]
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Sensor fusion example: Measurement model

* In the previous scenario - the position estimate is quite noisy
(because of the low precision of the Lidar measurements)

 Therefore, in the second scenario, position is measured with Lidar

and GPS
_plida’r'_ 1 0 0 _p_ _5lida/r'_
Pogps | = |1 0 O [v]| + | Ogps
i Aimu 1y _0 0 1_ _CL_ ' i d,;mu 1y

2t = Gl + 0y
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Sensor fusion example: Noise model tuning

* The measurement noise covariance matrix Q; for this scenario has
an additional GPS variance

(o2 0 ] 0.52 0 0

lidar
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Sensor fusion example: Position estimation

Position

————— Ground truth

p [m]

2 | | | | | | | | |
0 2 4 6 8 10 12 14 16 18

t[s]
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Sensor fusion example: Position estimation

Position

i
wl Wf'ﬂ]l,mn ‘wt

M Wl !‘J |
”‘W‘J‘% %J wm%%

—— Lidar data

[m]
“t'g_
X =
~ey |
—ﬂE—
3\
i
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Sensor fusion example: Position estimation

Position

Lidar data
GPS data
6 Estimated KF
Cot bt leoul Ground truth

p[m]

Combining Lidar and GPS data results in a more
accurate estimation
| |

| |
6 8

| |
10 12 14 16 18
t[s]
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Sensor fusion example: Position variance

Position variance

Tl
= 0—2
lidar
09 42
gps
2
08+ Testimated
0.7
0.6 | 0.025 -
05 B 0015
0-4 | | | | 0.01
03 or
02 oo | |
01}
0E T T T T T T T T I
0 2 4 6 8 10 12 14 16 18

t[s]
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Sensor fusion example: Conclusion

* Problem: Vehicle state estimation using Kalman filter

* The example pointed out:

How to create a motion model and a measurement model
How to fuse the data from different types of sensors

How to set the initial state vector and the initial covariance
matrix

How to chose appropriate values for process noise and
measurement noise covariance matrices

How to achieve a more accurate state estimation by adding
more sensors

How fusion of data decreases the overall estimation variance
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Useful trick

* Augment the state vector with some auxiliary states and then apply the
KF to the augmented state space model

* What can we handle?
* Colored state noise
* Colored measurement noise
 Sensor offset and drifts
« Sensor faults (sudden offset)
« Actuator fault (sudden offset)
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Common problems in multi-sensor data fusion

* Registration: Coordinates (both time and space) of different sensors or
fusion agents must be aligned.

* Bias: Even if the coordinate axis are aligned, due to the transformations,
biases can result. These have to be compensated.

* Correlation: Even if the sensors are independently collecting data, processed
information to be fused can be correlated.

 Data association: multi-target tracking problems introduce a major
complexity to the fusion system.

* Out-of-sequence measurements: Due to delayed communications between
local agents, measurements belonging to a target whose more recent
measurement has already been processed, might arrive to a fusion center.
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Example: Asynchronous measurements

" > Sensor | Type
"'; GPS OXTS 4002
- LiDAR Ouster OS1-64 and OS1-16
Gyroscope McLaren Applied
: Accelerometer McLaren Applied
..... NVIDIA DrivePX2 ~ Speedgoat Speed sensor Kistler Correvit SFII
= 3 = Q5 |
& A B of
| Vehicle Asynchronous
i | IMU GPS | . :
) el odometry measurements incorporation
L=
LiDAR localizati — Extended Hoo fil
1 ocalization xtende | ter [£CL, UL, ?,bL] LiDAR (N 20 HZ)
v ; :
Performance evaluation <~ . [$V1yv:¢x] ,  Vehicle pose(~250 Hz)
[4)7, Vehicle twist(~ 250 Hz)
| [¥rw, u]” . IMU(~240 He)
Allows to incorporate sensors
with different update rates J
correctly. k Vehicle motion model:

explicit dependence on the
sampling time At
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Example: Out-of-sequence measurements

* Might lead to incorrect temporal order, which in turn causes a negative
time measurement update (NTMU) in the fusion algorithm (e.g., EKF).

* As a result, the process of sensor fusion is not performed correctly.
* Awrong representation of the environment is created!

z1

t-1 I Uieas :
Sensor fusion system
T Unit delay Sensor 1 Acquisition Processing Transfer 1
t >
e . 3 |
N . =Sq N I 5%
‘ Kalman - i 1 4 o I
Sensor 1 . Sensor 2 Acquisition| Processing Transfer I
\ filter % : | -
D, 55 Yy
Track - | TJ.\'I'!J(‘I T ieas | .\'!‘k |
. sens; < fusion Fused | I —
- X state X!
NI
KF 3
Fusion :l
enter _ _
X X

Unit delay

e

[Source: A. Mehmed, Runtime monitoring of automated driving systems, 2019]
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Example: Out-of-sequence measurements

* Timestamping data at arrival (Centralized Method)
* Measurement cycle time T_=1/fps

* Timestamping at the time of acquisition (Distributed Method)
* Global time is needed

* Triggering method (by external source)
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Sensor fusion using the Autoware stack

AUTOWARE. A AUTOWARE.ALUTC AUTOWARE.IO
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-
Sensor fusion using the Autoware stack

CIFCD Pipeline AD/ECU Reference Hardware

Autoware.Auto 0S5 & Middleware Hardware

Safety Perception Planning i Control

opbD Scenario

Specification Generation Assessment ROS CPU GPU

(AD Behavior)
Localization DDS

OSRTOS A

Simulation Sensing Vehicle VF

Map Datab:

Cargo (Autenomous Valet
Parking)

Q0D Reference/Solutions

Autoware.org, 2021
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Localization using the EKF

Predict

Prediction model

4 2

Measurement Update

measured_pose, or
. . N
measured_pose_with_covariance _I Latest pose »| maxdelay ) [ Mahalanobis

7| measurement dl gate gate
A
measured_twist, or

measured_twist_with_covariance . ( . ?
- - __| Latest twist . | maxdelay Mahalanobis Twist
'l measurement gate gate
\

:
[ Publish J

https://gitlab.com/autowarefoundation/autoware.ai/core perception/tree/master/ekf localizer
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e
Live demo / Autoware

Localization with odometry only (IMU)

Localization with GNSS without noise

Localization with GNSS with noisy data

Localization with GNSS with noise and bias

Localization with lidar

* parametertuning

* Lidar pose has an unknown time delay and unknown noise

-l o

11/11/2021 AA 274 | Lecture 16 58



