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Today’s lecture

* Aim
* Learn about Markov localization, with an emphasis on EKF and non-
parametric localization

* Readings

e S. Thrun, W. Burgard, and D. Fox. Probabilistic robotics. MIT press, 2005.
Sections 7.2 —-7.6, 8.3
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Mobile robot localization

* Problem: determine pose of a robot relative to a given map

* Localization can be interpreted as
the problem of establishing
correspondence between the map
coordinate system and the robot’s
local coordinate frame

* This process requires integration
of data over time
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Local versus global localization

* Position tracking assumes that the initial pose is known -> local
problem well-addressed via Gaussian filters

* In global localization, the initial pose is unknown -> global problem
best addressed via non-parametric, multi-hypothesis filters

* In kidnapped robot localization, initial pose is unknown and during
operation robot can be “kidnapped” and “teleported” to some other
location -> global problem best addressed via non-parametric, multi-
hypothesis filters
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Static versus dynamic environments

e Static environments are environments where the only variable
guantity is the pose of the robot

* Dynamic environments possess objects (e.g., people) other than the
robot whose locations change over time -> addressed via either state
augmentation or outlier rejection
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Passive versus active |localization

* In passive localization, localization module only observes the robot;
i.e., robot’s motion is not aimed at facilitating localization

* In active localization, robot’s actions are aimed at minimizing the
localization error

* Hybrid approaches are possible
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Single-robot versus multi-robot

* In single-robot localization, a single, individual robot is involved in the
localization process

* In multi-robot localization, a team of robots is engaged with
localization, possibly cooperatively (or even adversarially!)

In this class we will focus on local & global, static (or quasi-static),
passive, single-robot localization problems
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-
Casting the localization problem within a
Bayesian filtering framework

* State x;, control u; and measurements z; have the same meaning as
in the general filtering context

* For a differential drive robot equipped with a laser range-finder
(returning a set of range 1; and bearing ¢; measurements)
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-
Casting the localization problem within a
Bayesian filtering framework

* A map mis a list of objects in the environment along with their
properties

m = {mi,ma,...,my}

* Maps can be

* Location-based: index i corresponds to a specific location (hence, they are
volumetric)

* Feature-based: index i is a feature index, and m; contains, next to the
properties of a feature, the Cartesian location of that feature

11/9/21 AA 274 | Lecture 14 9



Location-based maps

Vertical cell decomposition Fixed cell decomposition (occupancy grid)

stat | |
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Feature-based maps

Line-based map Topological map

(a) (b)
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-
Casting the localization problem within a
Bayesian filtering framework

* Motion model is probabilistic

p(a:t | UtaﬂUt—l)

Ut
Tt—-1 '

° Key fact: p(xt | Ut, xt—l) 7& p(ajt | Uty Tg—1, m) Consistency of state
* Useful approximation (tight at high update rates) Xe With map m

p(xt | Uz, mt—l) p(xt | m) Uses approximation

p(xt) p(mlxtautaxt—l) %p(mlxt)
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-
Casting the localization problem within a
Bayesian filtering framework

* Measurement model is probabilistic
P&y | By, 0)

* Sensors usually generate more than one measurement when queried

zt:{ztl,...,th}

* Typically, independence assumption IS made

Zt|/Eta H p |I't7

11/9/21 AA 274 | Lecture 14 13



Markov localization

e Straightforward application

of Bayes filter Data: bel(x;_1),us, z¢, m

Result: bel(x;)
* Requires a map m as input foreach z; do

e Addresses: b_el(flft) = fp(xt | U, xt—im) bel(xt—l) 1
* Global localization bel(xt) = np(zt |, m) bel(xy);
end

* Position tracking

* Kidnapped robot problem Return bel(z;)
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Markov localization: typical choices
for initial belief

* Initial belief, bel(x,) reflects initial knowledge of robot pose
* For position tracking

1 ifitg =
* If initial pose is known, bel(xg) = { SO0

0 otherwise

* If partially known, bel(zg) ~ N (Zo, Xo)
* For global localization
* If initial pose is unknown, bel(xy) = 1/|X|
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Markov localization: example
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Markov localization: example
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Markov localization: example

bel(s) B
[
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Instantiation of Markov localization

* To make algorithm tractable, we need to add some structure to the
representation of bel(x;)
1. Gaussian representation
2. Particle filter representation
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Extended Kalman filter (EKF) localization

* Key idea: represent belief bel(x;) by its first and second moment, i.e.,
Uy and X,

* We will develop the EKF localization algorithm under the assumptions
that:

1. A feature-based map is available, consisting of point landmarks
Location of the

— - . . landmark in the global
{ b e }’ " ( Y32 z,y) coordinate frame

2. There is a sensor that can measure the range r and the bearing ¢ of the
landmarks relative to the robot’s local coordinate frame

* Key concepts carry forward to other map / sensing models
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Range and bearing sensors

* Range & bearing sensors are common: features extracted from range
scans and stereo vision come with range r and bearing ¢ information

* At time t, a set of features is measured (assumed independent)
2t = {Ztazta' } — {(rta¢t) (T?,gb?),}

* Assuming that the i-th measurement at time t corresponds to the j-th
landmark in the map, the measurement model is

(7“2) B ( VM — )2+ (myy — y)? ) LN(0.Q))

& L atan2(m;, — Yy, Mjo — ) — 0 "

=h(zs,7.9%) Gaussian noise
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The issue of data association

* Data association problem: uncertainty may exists regarding the
identity of a landmark

* Formally, we define a correspondence variable between measurement
z; and landmark m; in the map as (assume N landmarks)

ce{l,...,.N+1}

. C',f: = 7 < N if i-th measurement at time t corresponds to j-th landmark

* ¢! = N +1 ifameasurement does not correspond to any landmark

* Two versions of the localization problem
1. Correspondence variables are known
2. Correspondence variables are not known (usual case)
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EKF localization with known correspondences

* Algorithm is derived from EKF filter

* Assume motion model (in our case, differential drive robot)
T = g(us, Te_1) + €, et ~ N (0, Ry), Gy = J (U, i)

* Assume range and bearing measurement model

- . 0@y, J, m)
() - () trJ
2 = h(xy¢, j,m) + oy, §¢ ~ N(0,Q:), H} =
aﬂjt
. or! or! or? _ Mj,a—Ht _ Mj,y—Hi,y 0
ah(’ut’J’m) _ | OBt OHiy OB | _ \/(m.'j=$_ﬁt,m)2+(mj:y_ﬁt,y)2 \/(mj,w—ﬁt,m)Q‘f‘(mj-,y_ﬁt,y)Q
8gjt 994 O, 0, My~ Mty . M,z —Ht o 1
8Et,m aﬁt,y aﬁt,e (mj,m_ﬁt,m)2+(mj,y_ﬁt,y)2 (mjam_Et,a:)2+(mj=y_ﬁt,y)2

o2 0
o= (7 8)
0 o

11/9/21 AA 274 | Lecture 14 23



EKF localization with known correspondences

Data: (ﬂ’t—la Zt—l)a Uty 2ty Ct, TN

* Main difference with EKF filter: Result: (u, %)
multiple measurements are B = g(ut,ut_l)T;
processed at the same time e =G 1Ge + Ry

. - T XAV A
* We exploit conditional foreach z = (1}, ¢;)" do

.
J = Cy,

22-:( VM = ) + (myy = )2 )

atanZ(mj,y — ﬁt,y, My oz — Et,x) o Ht,O

independence assumption

p(zt | Lty Ct, m) — H p(zi | Lt sz;,v m)
)

Si = H" Xy [Hy]" + Q;

e Such assumption allows us to Ki=3%,[H|T 5] \ Innovation
incrementally add the I, = [ +Kz(zt - zt) covariance
information, as if there was zero Yy = (I — K{Hf) %y
motion in between end
measurements pt = iy and Xy = By

Return (p¢, 3¢)
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Example of EKF-localization: prediction step

e Observations measure relative

distance and bearing to a
marker

* For simplicity, we assume that

the robot detects only one
marker at a time
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Example of EKF-localization:
measurement prediction step
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Example of EKF-localization:
correction step
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EKF localization with unknown correspondences

* Key idea: determine the identity of a landmark during localization via
maximum likelihood estimation, whereby one first determines the
most likely value of ¢, and then takes this value for granted

* Formally, the maximum likelihood estimator determines the
correspondence that maximizes the data likelihood

Cy = argmax p(Zt C1:t, M, 21:t—1, ul:t)

Ct

* Challenge: there are exponentially many terms in the maximization
above!

* Solution: perform maximization separately for each z}
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Estimating the correspondence variables

 Step #1: find
p(’:; | Cl:¢, T 21:¢—1, ul:t)
* Derivation (sketch)
p Zt |£I?t, C1:¢, T, 21:t—1, U1: t) (iBt | C1:t, TN, Zl:t—laulzt) dz4

(Zt|61t,m Z1:t— 1,U1t =

p(2 |xt,ct, . bel(xy) day

\\

(h(xtacta )7 t \ NN(ﬁtait)
(h(:utactv m) + ( )Qt)
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Estimating the correspondence variables

* Performing the algebraic calculations

p(Z:{ | Cl:¢, Ty 21:¢—1, ul:t) ~ N(h(ﬁta C%a m)a H;jl it [HZ]T i Qt)

* Step #2: estimate correspondence as

) . 2
€y = argmax p(z¢|crie, M, 21:4—1, U1:¢)
Cy

~ arg max N (z}; h(fit, i, m), HiL:H, + Q:)

i
Cy
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EKF localization with unknown correspondences

Data: (pe—1,2¢-1), ut, 2¢,m
Result: (¢, 24)

e Same as before, plus the T = gl 1) &
inclusion of a maximum By =GN, G T B
likelihood estimator for the foreach z; = (r},¢;)" do

foreach landmark k in the map do

25 = ( \/(m’”? - ﬁt,x)Q +(y — m’y)Q )
atan2(mk,y = ,L_Lt,y, Mmeg o — ﬂt,x) o ﬁt,@

SF=HFY [HFT + Qu;

end .

j (i) = arg max N (zy; 27, SF)

Ki = 5, [H{9)7 [5]9)1;

B, =B + Ki(z - 2]7);

Y= (I = KiHP) T

end

correspondence variables

Correspondence
estimation

Ut = :Ut and Zt = St,
Return (pe, 3¢)
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Comments

e Other popular features include lines, corners, distinct patterns
* |In the case of lines, an observation would be
- i
’I"t.
(]
A2
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Comments

* To deal with outliers/minor changes in the map, we may also consider
a validation gate:

Only match landmark j with measurement i if (zi — )T [SF]71 (27 — 27) < 5

\ J
l

Mahalanobis distance

* A more general approach to deal with data association is the multi-
hypothesis tracking filter, where a belief is represented by a mixture
of Gaussians (each tracking a sequence of data association decisions)

* UKF localization is another popular approach for feature-based
localization
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Monte Carlo localization (MCL)

* Key idea: represent belief bel(x,) by
a set of M particles

[M]}

Xo={zy, 05,2y
* Requires a map m as mput

e Addresses:
* Global localization
* Position tracking

e Kidnapped robot problem (by injecting
random particles)

* Can handle dynamic environments
via outlier rejection
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Data: Xt—la Ut, 2, TN
Result: &}

?t:Xt:@;

for 2 =1 to M do

Sample :I;i[gm] ~ p(xs | ug, x,[fll,?n);

[m]

w™ = p(z | 2™, m);
X, =%, (2, wl™);
end
for i =1 to M do

Draw ¢ with probability o 'wgi];
Add :E,[f] to Xy;

end
Return A&}
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MCL: example
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Next time

11/9/21 AA 274 | Lecture 14 36



