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Logistics

* HW3 due tomorrow (Friday, 11/5)
* HW4, final project description out later today/early tomorrow

* Note on group problems: intended to be completed collaboratively
(i.e., not parted out/parallelized)
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Today’s lecture

* Aim
* Learn about non-parametric filters

* Readings
* S. Thrun, W. Burgard, and D. Fox. Probabilistic robotics. MIT press, 2005.
Sections3.1-3.4,4.1,4.3,7.1
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Instantiating the Bayes' filter

* Tractable implementations of Bayes’ filter exploit structure and / or
approximations; two main classes

* Parametric filters: e.g., KF, EKF, UKF, etc.
* Non parametric filters: e.g., histogram filter, particle filter, etc.
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Histogram filter

» Key idea: use discrete Bayes’ filter as an approximate inference tool
for continuous state spaces
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 Step #1: histogram filters decompose a continuous space into finitely

many bins
{2k.+}: convex regions
dom(X;) =z Uxo: U... Tk forming a partition of state
™\ State space space (e.g., grid cell)
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bel(Xt - iEk’t)

Example
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Histogram filter

* Step #2: assign to each region xy ;. a probability py ¢, probabilities are
then approximated according to a piecewise scheme

p(xy) = |§ki|’ for all x; € x4 = p( Xt € i t) = / Pt dzi = pi:i
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Histogram filter

e Step #3: discretize motion and measurements models, i.e.,

P(xt | Ut, -’Et—l) and P(Zt | xt)

1. Select mean state as representative state

Bt = |33k,t|_1/ s day
Tkt

2. Approximate measurement model
p(zt | Trt) ~ p(2

3. Approximate transition model

p(ﬂfk,t | Ut, ﬂ?zﬂ,t—l) ~ 1 |$k,t|p(5€k,t |Ut, @z‘,t—l)

Ti:t)

e Step #4: execute discrete Bayes’ filter with discretized probabilities

11/4/21 AA 274 | Lecture3 9



Histogram filter

* Then one can run the usual discrete Bayes’ filter

Data: {pk,t—1}7 Ut, 2t

* Belief bel(x;) Result: {py;}
represented as pmf foreach k£ do
{pk,t} ﬁk,t — ZZ-P(Xt = Tk |utaXt—1 = xi)Pi,t—l;
Pkt = np(z | Xy = xk)ﬁk,t?
end

Return {pg.+}
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Particle filter

* Key idea: represent posterior bel(x;) by a set of random samples

S
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* Allows one to represent non-Gaussian distributions and handle
nonlinear transformations in a direct way
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Particle filter

» Samples of posterior distribution are called particles, denoted as
X, : 1] . .[2] [M]

= T L . a sy B
* A particle represents a hypothesis about what the true world state
might be at time t

* Ideally, particles should be distributed according to
[m]

Ty~ p(oe | 21, ure) = bel(ze)

* Matching exact onlyas M — oo, but M = 1000 usually good enough

* A particle filter constructs the particle set X, from the particle set x,_,
recursively, with the goal of matching the distribution bel(x;)
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Particle filter: algorithm

bel(x¢-1)
/—A—\
* The temporary particle set x, gata’ltx?’“t’zt
. -— esult: t
represents the belief bel(x;) X, = X, =0
* The particle set X, represents Prediction: for i =1 to % do -
the belief bel(x;) bel(x) L | Samplex; "~ play [ue, 2;1);
™ = pla | 2™
* Importance factors are used to mportance —| m] . [m]
. . factor Xt:XtU(xt y Wy )5
incorporate measurement z; in .
. ecn
the particle set -~ form — 1 to M do
* After resampling, particles are Correction: Draw i with probability o w;";
(as M — o) distributed as bel(x)) 1 | Add 2} to A,;

d
bPl(’Et) = 77p(2t | 337: ) bel( ) - Eréturn Xy
B

11/4/21 AA 274 | Lecture3 bel(x;) 13



Particle filter: example B igﬁ& i
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* Resampling can be a high variance
process (e.g., “weight collapse” can be

e
s i
s

a problem) motivating the development B
of lower variance schemes and/or e
recovery processes "

* Many extensions/variants (e.g., % @zt %%
Gaussian Sum Particle Filtering in which g
belief is represented as a Gaussian % SEBFLaRE GBERER bR S

Mixture Model) % %%
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Next time

Estimation:
Robot’s belief
update

p(x) Observation:

Prediction:
Robot’s belief
before the
observation
| 1 |
X
m
Xt t Xt Xt
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