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Logistics
* Additional section slot: Friday 9:45—11:45AM

* Genbu down for PY3 upgrade this Wednesday (10/27)

* Be sure to preserve your work (e.g., using git)!
 HW3, section 5 deadlines both extended +1 day
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Module 3

Knowledge

Mission goals

Localization position Decision making

Map Building global map Motion planning
environmental model trajectory
local map
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Information > Trajectory
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actuator
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| See-think-act
Sensing Actuation

Real world
environment
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Today’s lecture

* Aim
 Learn basic concepts about Bayesian filtering

* Readings
* S. Thrun, W. Burgard, and D. Fox. Probabilistic robotics. MIT press, 2005.
Chapter 2
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Localization

* Two main approaches:
1. Behavioral approach: design a set of behaviors that together result in the
desired robot motion (no need for a map)

2. Map-based approaches: robot explicitly attempts to localize by collecting
sensor data, then updating belief about its position with respect to a map

* We will focus on map-based approaches; two main aspects:

* Map representation: how to represent the environment?
* Belief representation: how to model the belief regarding the position within
the map?
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Probabilistic map-based localization

* Key idea: represent belief as a
probability distribution
1. Encodes sense of position

2. Maintains notion of robot’s
uncertainty

 Belief representation:

1. Single-hypothesis vs. multiple
hypothesis

2. Continuous vs. discretized

* Today we will overview basic
concepts in Bayesian filtering
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Basic concepts in probability

 Key idea: quantities such as sensor measurements, states of a
robot, and its environment are modeled as random variables (RVs)

* Discrete RV: the space of all the values that a random variable X can
take on is discrete; characterized by probability mass function (pmf)

p(X=z) (orp(), Y p(X=g)=1

Random variable / \ Specific value T

« Continuous RV: the space of all the values that a random variable X
can take onis continuous; characterized by probability density

function (pdf)

P(angb)z/bp(a:)d:c, /oop(a:)dle

a — 0O
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N
Joint distribution, independence, and
conditioning
* Joint distribution of two random variables X and Y is denoted as

ple,y) :=p(X =z and Y = y)
* If Xand Y are independent
p(z,y) = p(z)p(y)

» Suppose we know that Y = y (with p(y) > 0); conditioned on this
fact, the probability that the X’s value is x is given by

p(CU, y) Note: if X and Y are independent

plxr|y) =
5 v) p(y) p(z]y) = p(a)!

Conditional probability
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Law of total probability

* For discrete RVs:

p(x) =) plz,y) = p(z|y)py)
* For continuous RVs:

p(z) = / p(z, y)dy = / p(z | y)p(y)dy

* Note: if p(y) = 0, define the productp(x | y)p(y) =0

10/26/21 AA 274 | Lecture 11 9



Bayes’ rule

 Key relation between p(x | y) and its “inverse,” p(y | x)

* For discrete RVs:

py|z)p(z) _ ply|z)p(z)
p(y) X pyla)p(a)

p(z|y) =

 For continuous RVs:

p(o|y) = V12

p(z) _ pyl|z)p(z)
) J p(y|z)p(z’) dz
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Bayes’ rule and probabilistic inference

* Assume x is a quantity we would like to infer from y

* Bayes rule allows us to do so through the inverse probability, which
specifies the probability of data y assuming that x was the cause

Posterior probability distribution Prlor probability distribution
N\ ply|z)p fE)

p(x | y) fp y | T ) (SE’) da/‘ <« Normalizer, does not

Data depend on x := 1

* Notational simplification

p(z|y) =np(y|z)p(z)
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More on Bayes’ rule and independence

 Extension of Bayes rule: conditioning Bayes rule on Z=z gives

p(z|y,z) = p(y|z,2)p(z|2)

p(y|2)
 Extension of independence: conditional independence

p(z|2) =p(z|zy)

p(z,y|z) = p(z|2)p(y|2), equivalent to {p(y |2) = p(y| 2, x)

* Note: in general

p(z,y|z) =plz|2)p(y|2) =5 p(z,y) = p(z)p(Y)
p(z,y) = p(z)ply) =~ p(w y|z)=p(z|2)p(y]|2)
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Expectation of a RV

» Expectation for discrete RVs: E[X] =)~ zp(z)

 Expectation for continuous RVs: E[X]mz /:Up(a:) dz

* Expectationis a linear operator: ElaX + bl =a FE|X]|+b

* Expectation of a vector of RVs is simply the vector of expectations

 Covariance

cov(X,Y) = E|[(X — E[X]))(Y — E[Y]))!] = E[XYT] — EX]|E[Y]*
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Model for robot-environment interaction

* Two fundamental types of robot-environment interactions: the robot
can influence the state of its environment through control actions, and
gather information about the state through measurements

* State x;: collection at time t of all aspects of the robot and its
environment that can impact the future

* Robot pose (e.g., robot location and orientation)
* Robot velocity
 Locations and features of surrounding objects in the environment, etc.

» Useful notation:T¢,:ty = Tty y Tty 41y Tt 425 -+ 3 Lty

* A state x; is called complete if no variables prior to x; can influence the
evolution of future states = Markov property
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Measurement and control data

* Measurement data z;: information about state of the environment at
time t; useful notation

ztl:tz .= ztlaztl—i—la zt1-+—2) AN ,Zt2

 Control data u;: information about the change of state at time t; useful
notation

utl:tz .= ut17ut1+17 u’t1+27 LA 7u’t2

 Key difference: measurement data tends to increase robot’s
knowledge, while control actions tend to induce a loss of knowledge
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State equation

* General probabilistic generative model

p(CUt | L0:t—1y R1:t—1) ul:t)

v Convention: first take control
action and then take measurement

» Key assumption: state is complete (i.e., the Markov property holds)

P P(CUt | LO:t—15 #1:t—1> Ul:t) — p(wt | xt—laut)
State transition probability

* In other words, we assume conditional independence, with respect
to conditioning on x;_4
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Measurement equation and
overall stochastic model

* Assuming x; is complete

/'P(Zt | Lo:ty 21:t—1> Ul:t) — p(Zt | fUt)

Measurement probability

* Overall dynamic Bayes i1 > T Zip1
network model (also / -~
referred to as hidden
Markov model)
SENO
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Belief distribution

* Belief distribution: reflects internal knowledge about the state

* A belief distribution assigns a probability to each possible
hypothesis with regard to the true state

* Formally, belief distributions are posterior probabilities over state
variables conditioned on the available data

bel(xs) := p(t | 21:¢, U1:t)
 Similarly, the prediction distribution is defined as
@(zt) = p(T¢ | 21:6—1, 1)

» Calculating bel(x,) from bel (x;) is called correction or
measurement update
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Bayes filter algorithm

 Bayes’ filter algorithm: most general algorithm for calculating beliefs
» Key assumption: state is complete

Update rule
* Recursive algorithm Data: bel(z;_1),us, 2 -
* Step 1 (prediction): Result: bel(z;)
compute bel (x;) foreach z; do
* Step 2 (measurement update): bel(z;) = [ p(xy | ug, Ts—1) bel(zi_1) doy_1;

compute bel(x;) bel(z:) = np(z | z:) @(xt);

* Algorithm initialized with bel(x;,)  end
(e.g., uniform or points mass) Return bel(z;)
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Derivation: measurement update

b@l(ﬂ?t) — p(il?t Z1:ty ul:t)

_ (2t | Te, 21:0—1, Y1) (@t | Z1:0—1, U1:t) s e

p(Zt | Z1:t—1, ul:t)
N——— ——
S

— 7719(275 I xt) p(xt | Z1:t—1, ulit) Markov property
N———— —

=bel(xy)
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Derivation: correction update

bel(xy)

p(xt | Z1:t—1) ul:t)

p(ilft | Lt—1y Z1:t—1; Ul;t)p(xt—l | “1:t—1; ul‘t) dajt_l ;(::)ablability

p(%ﬁ | Lt—1, Ut)p(ft—l | Z1:t—15 Ul:t) dri_q Markov

.. d For general output feedback
p(xt | Lt—1, Ut)p(iUt—l | Z1:t—1, U’lzt—l) Lt—1 policies, u; does not provide
additional information on x;_4

|
—— — —

p(wt | -1, ur) bel(xi—1) dri—1
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Discrete Bayes’ filter

 Discrete Bayes’ filter algorithm: applies to problems with finite state

Spaces
. Data: {pk,t—l}a Ut, 2t
* Belief bel(x;) Result: {p; ¢}
represented as pmf foreach k do
{pk,t} Pri = > i P( X =g |ug, Xp1 = i) Pig—1;
Pkt = np(z | Xy = xk)ﬁk,t?
end

Return {pg.+}
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Next time
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