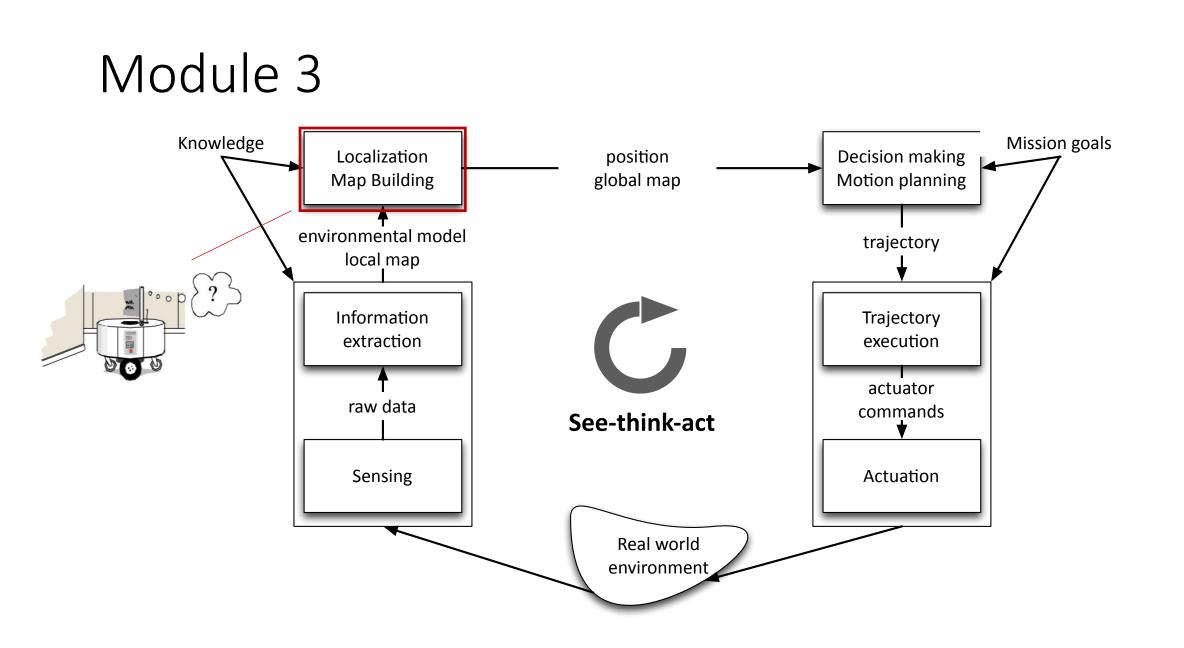
Principles of Robot Autonomy I

Introduction to localization and filtering theory

Logistics

- Additional section slot: Friday 9:45—11:45AM
- Genbu down for PY3 upgrade this Wednesday (10/27)
 - Be sure to preserve your work (e.g., using git)!
 - HW3, section 5 deadlines both extended +1 day



Today's lecture

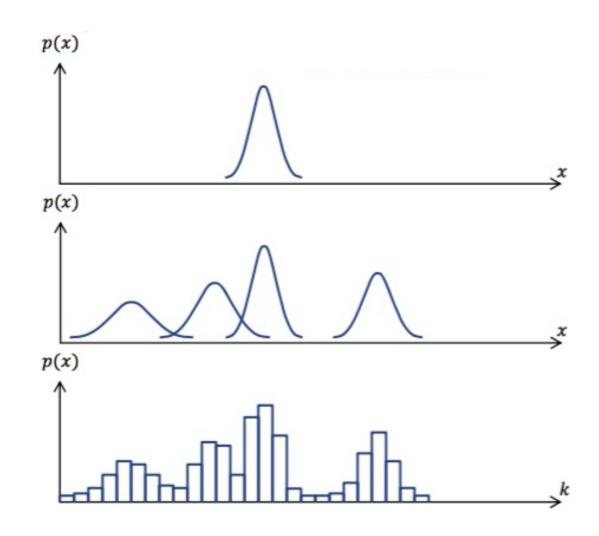
- Aim
 - Learn basic concepts about Bayesian filtering
- Readings
 - S. Thrun, W. Burgard, and D. Fox. Probabilistic robotics. MIT press, 2005. Chapter 2

Localization

- Two main approaches:
 - 1. Behavioral approach: design a set of behaviors that together result in the desired robot motion (no need for a map)
 - 2. Map-based approaches: robot *explicitly* attempts to localize by collecting sensor data, then updating belief about its position with respect to a map
- We will focus on map-based approaches; two main aspects:
 - Map representation: how to represent the environment?
 - Belief representation: how to model the belief regarding the position within the map?

Probabilistic map-based localization

- Key idea: represent belief as a probability distribution
 - 1. Encodes sense of position
 - 2. Maintains notion of robot's uncertainty
- Belief representation:
 - Single-hypothesis vs. multiple hypothesis
 - 2. Continuous vs. discretized
- Today we will overview basic concepts in Bayesian filtering



Basic concepts in probability

- Key idea: quantities such as sensor measurements, states of a robot, and its environment are modeled as random variables (RVs)
- Discrete RV: the space of all the values that a random variable X can take on is *discrete*; characterized by probability mass function (pmf)

$$p(X=x) \quad (ext{or} \ p(x)), \qquad \sum_x p(X=x) = 1$$
ariable Specific value

 Continuous RV: the space of all the values that a random variable X can take on is *continuous;* characterized by probability density function (pdf)

$$P(a \le X \le b) = \int_{a}^{b} p(x) \, dx, \qquad \int_{-\infty}^{\infty} p(x) \, dx = 1$$

10/26/21

Random v

AA 274 | Lecture 11

Joint distribution, independence, and conditioning

- Joint distribution of two random variables X and Y is denoted as p(x, y) := p(X = x and Y = y)
- If X and Y are independent

$$p(x,y) = p(x)p(y)$$

Suppose we know that Y = y (with p(y) > 0); conditioned on this fact, the probability that the X's value is x is given by

Note: if X and Y are independent

$$p(x \mid y) := p(x)!$$

 $p(x \mid y) := \frac{p(x, y)}{p(y)}$

Law of total probability

• For discrete RVs:

$$p(x) = \sum_{y} p(x, y) = \sum_{y} p(x \mid y) p(y)$$

• For continuous RVs:

$$p(x) = \int p(x, y) dy = \int p(x \mid y) p(y) dy$$

• Note: if p(y) = 0, define the product p(x | y)p(y) = 0

Bayes' rule

- Key relation between p(x | y) and its "inverse," p(y | x)
- For discrete RVs:

$$p(x \mid y) = \frac{p(y \mid x)p(x)}{p(y)} = \frac{p(y \mid x)p(x)}{\sum_{x'} p(y \mid x')p(x')}$$

• For continuous RVs:

$$p(x \mid y) = \frac{p(y \mid x)p(x)}{p(y)} = \frac{p(y \mid x)p(x)}{\int p(y \mid x')p(x') \, dx'}$$

Bayes' rule and probabilistic inference

- Assume *x* is a quantity we would like to infer from *y*
- Bayes rule allows us to do so through the inverse probability, which specifies the probability of data *y* assuming that *x* was the cause

Posterior probability distribution

$$p(x \mid y) = \frac{p(y \mid x)p(x)}{\int p(y \mid x')p(x') dx'}$$
Normalizer, does not depend on $x \coloneqq \eta^{-1}$

• Notational simplification

$$p(x \mid y) = \eta \, p(y \mid x) p(x)$$

More on Bayes' rule and independence

• Extension of Bayes rule: conditioning Bayes rule on *Z=z* gives

$$p(x \,|\, y, z) = \frac{p(y \,|\, x, z) p(x \,|\, z)}{p(y \,|\, z)}$$

• Extension of independence: *conditional independence*

 $p(x, y \mid z) = p(x \mid z)p(y \mid z), \qquad \text{equivalent to} \quad \begin{cases} p(x \mid z) = p(x \mid z, y) \\ p(y \mid z) = p(y \mid z, x) \end{cases}$

• Note: in general

$$p(x, y \mid z) = p(x \mid z)p(y \mid z) \implies p(x, y) = p(x)p(y)$$

$$p(x,y) = p(x)p(y) \implies p(x,y \mid z) = p(x \mid z)p(y \mid z)$$

Expectation of a RV

- Expectation for discrete RVs: $E[X] = \sum x p(x)$
- Expectation for continuous RVs: $E[X] = \int x p(x) dx$
- Expectation is a linear operator: E[aX + b] = a E[X] + b
- Expectation of a vector of RVs is simply the vector of expectations
- Covariance

 $cov(X,Y) = E[(X - E[X])(Y - E[Y])^T] = E[XY^T] - E[X]E[Y]^T$

Model for robot-environment interaction

- Two fundamental types of robot-environment interactions: the robot can influence the state of its environment through control actions, and gather information about the state through measurements
- State x_t: collection at time t of all aspects of the robot and its environment that can impact the future
 - Robot pose (e.g., robot location and orientation)
 - Robot velocity
 - Locations and features of surrounding objects in the environment, etc.
- Useful notation: $x_{t_1:t_2} := x_{t_1}, x_{t_1+1}, x_{t_1+2}, \dots, x_{t_2}$
- A state x_t is called *complete* if no variables prior to x_t can influence the evolution of future states \rightarrow Markov property

Measurement and control data

 Measurement data z_t: information about state of the environment at time t; useful notation

$$z_{t_1:t_2} := z_{t_1}, z_{t_1+1}, z_{t_1+2}, \dots, z_{t_2}$$

Control data u_t: information about the change of state at time t; useful notation

$$u_{t_1:t_2} := u_{t_1}, u_{t_1+1}, u_{t_1+2}, \dots, u_{t_2}$$

• Key difference: measurement data tends to increase robot's knowledge, while control actions tend to induce a loss of knowledge

State equation

• General probabilistic generative model

$$p(x_t | x_{0:t-1}, z_{1:t-1}, u_{1:t})$$

Convention: first take control action and then take measurement

• Key assumption: state is complete (i.e., the Markov property holds)

$$p(x_t | x_{0:t-1}, z_{1:t-1}, u_{1:t}) = p(x_t | x_{t-1}, u_t)$$

State transition probability

• In other words, we assume *conditional independence*, with respect to conditioning on x_{t-1}

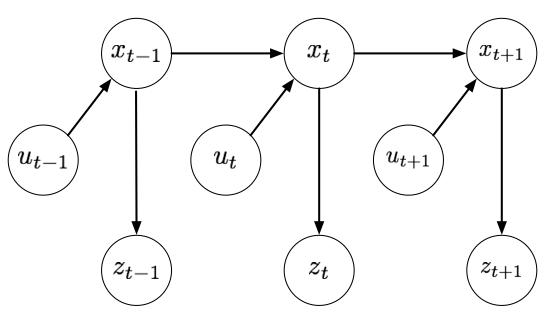
Measurement equation and overall stochastic model

• Assuming x_t is complete

$$p(z_t | x_{0:t}, z_{1:t-1}, u_{1:t}) = p(z_t | x_t)$$

Measurement probability

 Overall dynamic Bayes network model (also referred to as hidden Markov model)



Belief distribution

- Belief distribution: reflects internal knowledge about the state
- A belief distribution assigns a probability to each possible hypothesis with regard to the true state
- Formally, belief distributions are posterior probabilities over state variables conditioned on the available data

$$bel(x_t) := p(x_t | z_{1:t}, u_{1:t})$$

• Similarly, the *prediction* distribution is defined as

$$\overline{bel}(x_t) := p(x_t \mid \boldsymbol{z_{1:t-1}}, u_{1:t})$$

• Calculating $bel(x_t)$ from $\overline{bel}(x_t)$ is called correction or measurement update

Bayes filter algorithm

- Bayes' filter algorithm: most general algorithm for calculating beliefs
- Key assumption: state is complete
- Recursive algorithm
 - Step 1 (prediction): compute $\overline{bel}(x_t)$
 - Step 2 (measurement update):
 compute bel(x_t)
- Algorithm initialized with bel(x₀)
 (e.g., uniform or points mass)

Data: $bel(x_{t-1}), u_t, z_t$ Result: $bel(x_t)$ foreach x_t do $\begin{vmatrix} \overline{bel}(x_t) = \int p(x_t | u_t, x_{t-1}) bel(x_{t-1}) dx_{t-1}; \\ bel(x_t) = \eta p(z_t | x_t) \overline{bel}(x_t); \\ end$ end

Return $bel(x_t)$

Update rule

Derivation: measurement update

$$\begin{aligned} bel(x_t) &= p(x_t \mid z_{1:t}, \, u_{1:t}) \\ &= \frac{p(z_t \mid x_t, \, z_{1:t-1}, \, u_{1:t}) \, p(x_t \mid z_{1:t-1}, \, u_{1:t})}{\underbrace{p(z_t \mid z_{1:t-1}, \, u_{1:t})}_{:=\eta^{-1}}} \\ &= \eta \, p(z_t \mid x_t) \underbrace{p(x_t \mid z_{1:t-1}, \, u_{1:t})}_{=\overline{bel}(x_t)} \end{aligned}$$
Bayes rule Markov property

Derivation: correction update

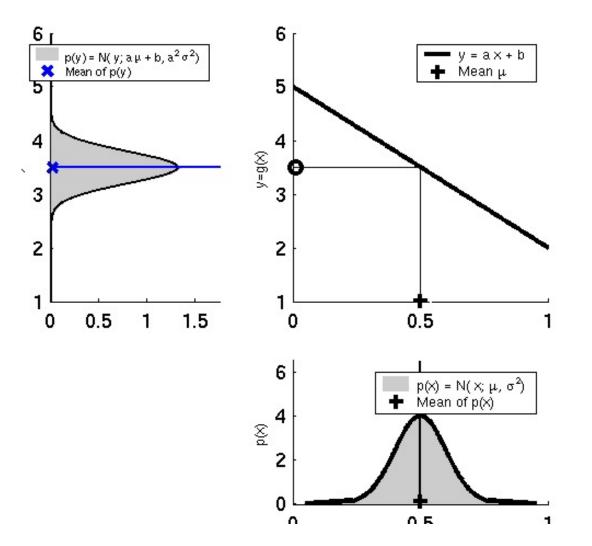
$$\begin{split} \overline{bel}(x_t) &= p(x_t \mid z_{1:t-1}, u_{1:t}) \\ &= \int p(x_t \mid x_{t-1}, z_{1:t-1}, u_{1:t}) \, p(x_{t-1} \mid z_{1:t-1}, u_{1:t}) \, dx_{t-1} & \text{Total} \\ &= \int p(x_t \mid x_{t-1}, u_t) \, p(x_{t-1} \mid z_{1:t-1}, u_{1:t}) \, dx_{t-1} & \text{Markov} \\ &= \int p(x_t \mid x_{t-1}, u_t) \, p(x_{t-1} \mid z_{1:t-1}, u_{1:t-1}) \, dx_{t-1} & \text{For general output feedback} \\ &= \int p(x_t \mid x_{t-1}, u_t) \, p(x_{t-1} \mid z_{1:t-1}, u_{1:t-1}) \, dx_{t-1} & \text{For general output feedback} \\ &= \int p(x_t \mid x_{t-1}, u_t) \, bel(x_{t-1}) \, dx_{t-1} & \text{For general output feedback} \\ &= \int p(x_t \mid x_{t-1}, u_t) \, bel(x_{t-1}) \, dx_{t-1} \end{split}$$

Discrete Bayes' filter

- Discrete Bayes' filter algorithm: applies to problems with *finite* state spaces
- Belief $bel(x_t)$ represented as pmf $\{p_{k,t}\}$

Data: $\{p_{k,t-1}\}, u_t, z_t$ Result: $\{p_{k,t}\}$ foreach k do $| \overline{p}_{k,t} = \sum_i p(X_t = x_k | u_t, X_{t-1} = x_i) p_{i,t-1};$ $p_{k,t} = \eta p(z_t | X_t = x_k) \overline{p}_{k,t};$ end Return $\{p_{k,t}\}$

Next time



AA 274 | Lecture 11