
Principles of Robot Autonomy I
Introduction to localization and filtering theory



Logistics

• Additional section slot: Friday 9:45—11:45AM
• Genbu down for PY3 upgrade this Wednesday (10/27)
• Be sure to preserve your work (e.g., using git)!
• HW3, section 5 deadlines both extended +1 day
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Module 3
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Today’s lecture
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• Aim
• Learn basic concepts about Bayesian filtering 

• Readings
• S. Thrun, W. Burgard, and D. Fox. Probabilistic robotics. MIT press, 2005. 

Chapter 2



Localization

• Two main approaches:
1. Behavioral approach: design a set of behaviors that together result in the 

desired robot motion (no need for a map)
2. Map-based approaches: robot explicitly attempts to localize by collecting 

sensor data, then updating belief about its position with respect to a map

• We will focus on map-based approaches; two main aspects:
• Map representation: how to represent the environment?
• Belief representation: how to model the belief regarding the position within 

the map? 
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Probabilistic map-based localization 
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• Key idea: represent belief as a 
probability distribution

1. Encodes sense of position 
2. Maintains notion of robot’s 

uncertainty

• Belief representation:
1. Single-hypothesis vs. multiple 

hypothesis
2. Continuous vs. discretized

• Today we will overview basic 
concepts in Bayesian filtering



Basic concepts in probability 
• Key idea: quantities such as sensor measurements, states of a 

robot, and its environment are modeled as random variables (RVs)
• Discrete RV: the space of all the values that a random variable X can 

take on is discrete; characterized by probability mass function (pmf)

• Continuous RV: the space of all the values that a random variable X 
can take on is continuous; characterized by probability density 
function (pdf)
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Random variable Specific value



Joint distribution, independence, and 
conditioning
• Joint distribution of two random variables X and Y is denoted as

• If X and Y are independent 

• Suppose we know that 𝑌 = 𝑦 (with 𝑝 𝑦 > 0); conditioned on this 
fact, the probability that the 𝑋’s value is 𝑥 is given by
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Conditional probability

Note: if X and Y are independent



Law of total probability

• For discrete RVs:

• For continuous RVs:

• Note: if 𝑝 𝑦 = 0, define the product 𝑝 𝑥 | 𝑦 𝑝 𝑦 = 0
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Bayes’ rule

• Key relation between 𝑝 𝑥 | 𝑦 and its “inverse,” 𝑝 𝑦 | 𝑥
• For discrete RVs:

• For continuous RVs:
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Bayes’ rule and probabilistic inference
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• Assume x is a quantity we would like to infer from y
• Bayes rule allows us to do so through the inverse probability, which 

specifies the probability of data y assuming that x was the cause

• Notational simplification

Prior probability distribution

Data

Posterior probability distribution

Normalizer, does not 
depend on 𝑥 ≔ 𝜂!"



More on Bayes’ rule and independence
• Extension of Bayes rule: conditioning Bayes rule on Z=z gives

• Extension of independence: conditional independence

• Note: in general
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Expectation of a RV
• Expectation for discrete RVs:

• Expectation for continuous RVs:

• Expectation is a linear operator:

• Expectation of a vector of RVs is simply the vector of expectations

• Covariance
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Model for robot-environment interaction
• Two fundamental types of robot-environment interactions: the robot 

can influence the state of its environment through control actions, and 
gather information about the state through measurements
• State 𝑥!: collection at time t of all aspects of the robot and its 

environment that can impact the future
• Robot pose (e.g., robot location and orientation)
• Robot velocity 
• Locations and features of surrounding objects in the environment, etc. 

• Useful notation: 
• A state 𝑥! is called complete if no variables prior to 𝑥! can influence the 

evolution of future states à Markov property
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Measurement and control data

• Measurement data 𝑧!: information about state of the environment at 
time t; useful notation 

• Control data 𝑢!: information about the change of state at time t; useful 
notation 

• Key difference: measurement data tends to increase robot’s 
knowledge, while control actions tend to induce a loss of knowledge 
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State equation

• General probabilistic generative model

• Key assumption: state is complete (i.e., the Markov property holds)

• In other words, we assume conditional independence, with respect 
to conditioning on 𝑥!"#
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Convention: first take control 
action and then take measurement

State transition probability



Measurement equation and 
overall stochastic model

• Overall dynamic Bayes 
network model (also 
referred to as hidden 
Markov model)
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Measurement probability

• Assuming 𝑥! is complete



Belief distribution 
• Belief distribution: reflects internal knowledge about the state 
• A belief distribution assigns a probability to each possible 

hypothesis with regard to the true state 
• Formally, belief distributions are posterior probabilities over state 

variables conditioned on the available data 

• Similarly, the prediction distribution is defined as 

• Calculating 𝑏𝑒𝑙 𝑥! from 𝑏𝑒𝑙 (𝑥!) is called correction or 
measurement update
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Bayes filter algorithm

• Bayes’ filter algorithm: most general algorithm for calculating beliefs
• Key assumption: state is complete
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• Recursive algorithm
• Step 1 (prediction):              

compute 𝑏𝑒𝑙 (𝑥$)
• Step 2 (measurement update): 

compute 𝑏𝑒𝑙 𝑥$
• Algorithm initialized with 𝑏𝑒𝑙 𝑥$

(e.g., uniform or points mass) 

Update rule



Derivation: measurement update

10/26/21 AA 274 | Lecture 11 20

Bayes rule

Markov property



Derivation: correction update
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Total
probability

Markov

For general output  feedback
policies, 𝑢# does not provide 
additional information on 𝑥#!"



Discrete Bayes’ filter
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• Belief 𝑏𝑒𝑙(𝑥!)
represented as pmf
{𝑝%,!}

• Discrete Bayes’ filter algorithm: applies to problems with finite state 
spaces



Next time
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