
Principles of Robot Autonomy I
Course overview, mobile robot kinematics



From automation…
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…to autonomy

AA 274A | Lecture 1 39/21/21



Course goals

• To learn the theoretical, algorithmic, and implementation aspects of 
main techniques for robot autonomy. Specifically, the student will

1. Gain a fundamental knowledge of the “autonomy stack”
2. Be able to apply such knowledge in applications / research by using ROS
3. Devise novel methods and algorithms for robot autonomy
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Course structure
• Four modules, roughly of equal length

1. motion control and planning
2. robotic perception
3. localization and SLAM 
4. state machines and system architecture

• Extensive use of the Robot Operating System (ROS)

• Requirements
• CS 106A or equivalent
• CME 100 or equivalent (for calculus, linear algebra)
• CME 106 or equivalent (for probability theory)
• See also the pre-knowledge quiz on the course website
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http://asl.stanford.edu/aa274a/pdfs/pre_knowledge_assessment.pdf


Logistics
• Lectures: 
• Tuesdays and Thursdays, 9:45am – 11:15am (NVIDIA Auditorium)
• Recordings will be made available to all students on Canvas.

• Sections
• 2-hour, once-a-week sessions starting Week 2
• Hands-on exercises that complement the lecture material, build 

familiarity with ROS, develop skills necessary for the final project

• Link to the section sign-up sheet
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https://docs.google.com/spreadsheets/d/1_K9DM6dUHGF8IXC1yVqDKGYg0mHjWupgHP4iX4IvrKI/edit?usp=sharing


Logistics
• Office hours: 
• Dr. Schmerling: Thursday, 12:45 – 1:45pm (Durand 217) and by appointment
• CAs: Monday, 1:00 – 3:00pm (Skilling Lab); Tuesday 11:30am – 1:30pm (Zoom); 

Friday, 10:00am – 12:00pm (Zoom)

• Course websites: 
• For course content and announcements: http://asl.stanford.edu/aa274a/
• For course-related questions: https://edstem.org/us/courses/14340
• For homework submissions: https://www.gradescope.com/courses/309846
• For lecture videos: https://canvas.stanford.edu/courses/142088

• To contact the AA274 staff, use the email: aa274a-aut2122-
staff@lists.stanford.edu
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Grading

• Course grade calculation
• (20%) final project 
• (60%) homework
• (20%) sections
• (extra 5%) participation on Piazza
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Team
Instructor CAs

Collaborators
• Daniel Watzenig
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Schedule
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Mobile robot kinematics

• Aim
• Understand motion constraints 
• Learn about basic motion models for wheeled vehicles
• Gain insights for motion control

• Readings
• R. Siegwart, I. R. Nourbakhsh, D. Scaramuzza. Introduction to Autonomous 

Mobile Robots. MIT Press, 2nd Edition, 2011. Sections 3.1-3.3.
• B. Siciliano, L. Sciavicco, L. Villani, G. Oriolo. Robotics: Modelling, Planning, 

and Control. Springer, 2008 (chapter 11). 

AA 274A | Lecture 1 139/21/21



Holonomic constraints

• Let 𝜉 = 𝜉!, … , 𝜉" # denote the configuration of a robot (e.g., 𝜉 =
𝑥, 𝑦, 𝜃 # for a wheeled mobile robot)

• Holonomic constraints
• ℎ! 𝜉 = 0, for 𝑖 = 1,… , 𝑘 < 𝑛
• Reduce space of accessible configurations to an 𝑛 − 𝑘

dimensional subset
• If all constraints are holonomic, the mechanical system 

is called holonomic
• Generally the result of mechanical interconnections
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Kinematic constraints

• Kinematic constraints

• constrain the instantaneous admissible motion of the mechanical system
• generally expressed in Pfaffian form, i.e., linear in the generalized velocities

• Clearly, 𝑘 holonomic constraints imply the existence of an equal 
number of kinematic constraints

• However, the converse is not true in general…
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Nonholonomic constraints

• If a kinematic constraint is not integrable in the form ℎ$ 𝜉 = 0, 
then it is said nonholonomic -> nonholonomic mechanical system
• Nonholonomic constraints reduce mobility in a completely different 

way. Consider a single Pfaffian constraint

• Holonomic
• Can be integrated to ℎ 𝜉 = 0
• Loss of accessibility, motion 

constrained to a level surface of 
dimension 𝑛 − 1

• Nonholonomic
• Velocities constrained to belong 

to a subspace of dimension 𝑛 −
1, the null space of 𝑎" 𝜉
• No loss of accessibility 
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Example of nonholonomic system

• System: disk that rolls 
without slipping 
• 𝜉 = 𝑥, 𝑦, 𝜃 #

x

y ✓

• No side slip constraint

• Facts:
• No loss of accessibility
• Wheeled vehicles are generally nonholonomic

AA 274A | Lecture 1 179/21/21



Types of wheels

• Standard wheels (four types)

• Special wheels: achieve omnidirectional motion (e.g., Swedish or 
spherical wheels)
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P
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Robot	
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Standard wheel -- fixed or steerable Standard, off-centered wheel (caster)
-- passive or active
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Kinematic models
• Assume the motion of a system is subject to k Pfaffian constraints

• Then, the admissible velocities at each configuration 𝜉 belong to 
the (n − k)-dimensional null space of matrix 𝐴#(𝜉)
• Denoting by {𝑔! 𝜉 , … , 𝑔"%&(𝜉)} a basis of the null space of 𝐴#(𝜉), 

admissible trajectories can be characterized as solutions to
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• Consider pure rolling constraint for the wheel:

• Consider the matrix

where [𝑔! 𝜉 , 𝑔'(𝜉)] is a basis of the null space of 𝑎#(𝜉)

• All admissible velocities are therefore obtained as linear 
combination of 𝑔! 𝜉 and 𝑔'(𝜉)

Example: unicycle
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Unicycle and differential drive models

Unicycle
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Simplified car model
Simple car
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References: (1) J.-P. Laumond. Robot Motion Planning and Control. 1998. (2) S. LaValle. 
Planning algorithms, 2006.
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From kinematic to dynamic models
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• A kinematic state space model should be interpreted only as a 
subsystem of a more general dynamical model 

• Improvements to the previous kinematic models can be made by 
placing integrators in front of action variables

• For example, for the unicycle model, one can set the speed as the 
integration of an action 𝑎 representing acceleration, that is

ẋ = v cos ✓, ẏ = v sin ✓, ✓̇ = !, v̇ = a



Next time
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