
Principles of Robot Autonomy I

Problem Set 2

Due Tuesday, October 19 (11:59pm)

Starter code for this problem set has been made available online through Github. To get started, download
the code by running git clone https://github.com/PrinciplesofRobotAutonomy/AA274A_HW2.git in a
terminal window.

You will submit your homework to Gradescope. Your submission will consist of (1) a zip folder containing

your code for the programming questions (denoted by the symbol), and (2) a single pdf with your answers

for written questions (denoted by the symbol), which in this assignment will be a merged pdf printout of
your Jupyter notebook with all figures included.

Introduction

The goal of this problem set is to familiarize you with algorithms for path planning in constrained environ-
ments (e.g. in the presence of obstacles) and techniques to integrate planning with trajectory generation
and control.

Problem 1: A* Motion Planning

To begin, we will implement an A∗ algorithm for motion planning, as outlined in pseudocode in Algorithm
1. In particular, we will apply this algorithm to 2D geometric planning problems (state x = (x, y)).

In this implementation, we will represent the free space by a graph, which is traversed by sampling and
collision-checking states from a deterministic grid. This implementation can be categorized as informed,
deterministic sampling-based planning (informed due to the A∗ heuristic).

(i) Implement the remaining functions in P1_astar.py within the Astar class. These functions repre-
sent many of the key functional blocks at play in motion planning algorithms:

• is_free which checks whether a state is collision-free and valid.

• distance which computes the travel distance between two points.

• get_neighbors which finds the free neighbor states of a given state.

• solve which runs the A∗ motion planning algorithm.

Be sure to read the documentation for every function for a more detailed description.

(ii) Now let’s test this implementation in a couple planning environments. To do so, open the associated
Jupyter notebook by running the following command:

$ jupyter notebook sim_astar.ipynb

Feel free to play with the number of obstacles and other parameters of the randomly generated envi-
ronment. When you are satisfied with your figures, print the notebook as a pdf to be merged into your
written pdf submission.
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Algorithm 1 A∗ Motion Planning

Require: xinit, xgoal

1: O.INIT(xinit) . Open set initialized with xinit

2: C.INIT(∅) . Closed set is initially empty
3: SET COST TO ARRIVE SCORE(xinit, 0)
4: SET EST COST THROUGH(xinit,DISTANCE(xinit,xgoal))
5: while O.SIZE > 0 do
6: xcurrent ← LOWEST EST COST THROUGH(O)
7: if xcurrent = xgoal then
8: return RECONSTRUCT PATH
9: end if

10: O.REMOVE(xcurrent)
11: C.ADD(xcurrent)
12: for xneigh in NEIGHBORS(xcurrent) do
13: if xneigh in C then
14: continue
15: end if
16: tentative cost to arrive = GET COST TO ARRIVE(xcurrent) + DISTANCE(xcurrent,xneigh)
17: if xneigh not in O then
18: O.ADD(xneigh)
19: else if tentative cost to arrive > GET COST TO ARRIVE(xneigh) then
20: continue
21: end if
22: SET CAME FROM(xneigh,xcurrent)
23: SET COST TO ARRIVE(xneigh, tentative cost to arrive)
24: SET EST COST THROUGH(xneigh, tentative cost to arrive + DISTANCE(xneigh,xgoal))
25: end for
26: end while
27: return Failure

Note: Notice that we collision-check states but do not collision-check edges. This saves us some computation
(collision-checking is often one of the most expensive operations in motion planning). Also, in this case the
obstacles are aligned with the grid, so paths will remain collision-free. However, outside such special circum-
stances one should add edge collision-checking and/or inflate obstacles to guarantee collision-avoidance.

Problem 2: Rapidly-exploring Random Trees (RRT)

While our A∗ planning relies on a predefined set of viable samples on the edges of a graph, in some scenarios
it is useful to draw samples incrementally and in a less structured fashion. This motivates sampling-based
algorithms such as Rapidly-exploring Random Trees (RRT) [1], which we will implement in this problem.

Since vanilla RRT builds its tree by extending from the nodes nearest to random samples, we cannot add the
same heuristic as A∗ to bias search in the direction of the goal. Instead, we will use a goal-biasing approach,
included in the pseudocode in Algorithm 2.

(i) Implement RRT for 2D geometric planning problems (state x = (x, y)) by filling in RRT.solve,
GeometricRRT.find nearest, and GeometricRRT.steer towards in P2_rrt.py.

You can validate your implementations of the parts of this problem in the associated notebook:

$ jupyter notebook sim_rrt.ipynb

(ii) You may have noticed that due to the random sampling in RRT, there is plenty of room to optimize
the length of the resulting paths. This motivates a variety of post-processing methods which locally
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Algorithm 2 RRT [1] with goal biasing.

Require: xinit, xgoal, maximum steering distance ε > 0, iteration limit K, goal bias probability p ∈ [0, 1]
1: T .INIT(xinit)
2: for k = 1 to K do
3: Sample z ∼ Uniform([0, 1])
4: if z < p then
5: xrand ← xgoal

6: else
7: xrand ← RANDOM STATE()
8: end if
9: xnear ← NEAREST NEIGHBOR(xrand, T )

10: xnew ← STEER TOWARDS(xnear,xrand, ε)
11: if COLLISION FREE(xnear,xnew) then
12: T .ADD VERTEX(xnew)
13: T .ADD EDGE(xnear,xnew)
14: if xnew = xgoal then return T .PATH(xinit,xgoal)
15: end if
16: end if
17: end for
18: return Failure

optimize motion planning paths. As it turns out, even very simple methods can perform quite well on
this task. We will implement one of the simplest of these algorithms, which we simply call Shortcut [2].

Implement the shortcutting algorithm outlined in the pseudocode in Algorithm 3 by filling in
RRT.shortcut_path. You can test your implementation in the notebook and should notice that in
nearly all cases, Shortcut will be able to refine to a shorter path.

Note: Post-processing algorithms such as this are performing a local optimization, which means the
result may be far from a globally optimal path. For example in this case, shortcutting is not likely
to move the path to the other side of an obstacle (i.e. to a different solution homotopy class), even
if this would result in lower path length. This motivates the use of asymptotically optimal varieties
of sampling-based planners such as RRT∗, which perform a global search and are thus guaranteed to
approach the globally optimal solution.

(iii) While geometric RRT does rapidly generate collision-free paths, these paths are not ideal candidates
to track with our wheeled robot as the paths’ sharp corners would require stopping and turning at
most nodes.

One way to resolve this issue is through kinodynamic motion planning, where kinematically- and
dynamically-feasible trajectories are built directly in the planner by concatenating subtrajectories.
There are two ways to do this, which each have potential drawbacks. The first is control sampling,
which (a) requires defining a sensible control subtrajectory sampling strategy, (b) can require a large
number of samples when the control-sampling scheme does not provide effective state sampling, and
(c) can struggle to reach a precise goal state or small goal region. The second is state sampling, which
requires a steering function, i.e. connecting to sampled states by solving a 2P-BVP. Unfortunately,
these 2P-BVP problems must be solved many times — for each candidate sub-trajectory and possibly
to measure distance while finding nearest neighbors. In our case, a candidate steering method could be
solving the optimal control problem in the Extra Problem of HW 1. However, this runs far too slowly
to be practical. A more reasonable steering candidate would be the differential flatness approach of
Problem 1 in HW 1. However, this may still require careful implementation to run efficiently, since
with kinodynamic planning we must add orientation and velocities to the state, tripling the problem
dimension.

Rather than exploring this further here, we will instead experiment with a simpler dynamics model
where speed is fixed, i.e. the Dubins car. This will allow us to leverage as a steering function the
analytical solution that exists for Dubins car shortest paths.
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Algorithm 3 Shortcut (deterministic)

Require: Πpath = (xinit,x1,x2, ...,xgoal)
1: SUCCESS = False
2: while not SUCCESS do
3: SUCCESS = True
4: for x in Πpath where x 6= xinit and x 6= xgoal do
5: if COLLISION FREE(PARENT(x),CHILD(x)) then
6: Πpath.REMOVE NODE(x)
7: SUCCESS = False
8: end if
9: end for

10: end while

Implement RRT for Dubins car planning problems (state x = (x, y, θ), see [3] for steering connection
details) by filling in DubinsRRT.find nearest and DubinsRRT.steer towards in P2_rrt.py. Computing
steering solutions in this code relies on installing the following python package:

$ pip3 install dubins

See https://github.com/AndrewWalker/pydubins/blob/master/dubins/dubins.pyx for usage details.

Installation notes for dubins:
If you are prompted to install Microsoft Visual C++ Build Tools, you can find them here https:
//visualstudio.microsoft.com/visual-cpp-build-tools/. However, we highly recommend using
MacOS or Linux to complete this part of the problem since installation has proven difficult on Windows.
Farmshare and genbu are good resources to access a Linux environment. Another option is to use
Google Colab to run your jupyter notebook. In Colab, you can install dubins using

!pip3 install dubins

(iv) Test all of the above in your notebook, generate the associated figures, and export the notebook
as a pdf to be included in your written submission.

Problem 3: Motion Planning & Control

In this problem, we will finally bridge the gap between our planned paths and trackable trajectories for
our differential drive robot. Currently our geometric paths have no time derivatives associated with them
to constitute trajectories, and our Dubins paths are based on the assumption of a fixed velocity, which is
an undue constraint on our robot. As mentioned previously, we can use kinodynamic motion planning to
directly plan trajectories which meet our robot’s kinematic and dynamics constraints, but this can be tricky
to do efficiently. Instead, we will use another simple post-processing technique for our planned paths and
leverage our controllers from Problem Set 1 to generate and follow corresponding trajectories.

(i) Smooth the paths from A∗ by fitting a cubic spline to the path nodes. This will be implemented
within the compute_smoothed_traj function of P3_traj_planning.py, and you may need to use the
splrep and splev functions from scipy.interpolate (read through their documentation). The output
of this function will include a trajectory [x, y, θ, ẋ, ẏ, ẍ, ÿ] from t = 0 to t = tf . Since all we have is a
geometric path, you should estimate the time for each of the points assuming that we travel at a fixed
speed Vdes along each segment. Adjust the smoothing parameter α (denoted s in splrep) to strike
a balance between following the original collision-free trajectory and risking collision for additional
smoothness.

You can validate your implementations of the parts of this problem in the associated notebook:
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$ jupyter notebook sim_traj_planning.ipynb

Note: There are many ways to ensure smoothed solutions are collision-free (e.g. collision-checking
smoothed paths and running a dichotomic search on α to find a tight fit against obstacles, or inflating
obstacles in the original planning to give additional room for smoothing). This strategy can be used
on geometric sampling-based planning methods as well.

(ii) Now we will begin leveraging our modules from Problem Set 1. Replace the scripts in the HW1
folder with your own implementations so that they can be imported by P3_traj_planning.py.

Next, fill in the function modify_traj_with_limits to generate control-feasible trajectories using the
time-scaling strategy and differential flatness, just as in in HW 1, Problem 1. You can then step
through the notebook to track these trajectories using the trajectory-tracking controller from HW 1,
Problem 3.

(iii) It may be tempting to stop here. However, run the notebook further to zoom in on the endpoint of
the trajectory. You will notice that the endpoint of the actual trajectory does not match the final
desired pose, due to a combination of both controller tracking error and potentially smoothing of the
original path. Even if we did get lucky and the robot landed close to the desired endpoint, the tracked
trajectory may have a nonzero velocity at its endpoint, quickly moving it off the goal. And in any case,
ongoing disturbances would certainly cause the robot to drift off the goal.

The solution to this is to switch from trajectory tracking to our pose stabilization controller
from HW 1, Problem 2 as the robot approaches the end of the trajectory. To do this, fill in the
function SwitchingController.compute_control to perform this controller switch some number of
seconds before reaching the goal.

In the notebook, we can continue the simulation for some extra time past the nominal final time
to make sure the robot reaches and stays near the final pose. Adjust the control gains on the pose
controller until you are satisfied with the final pose stabilization.

(iv) Finish testing all of the above in your notebook, generate the associated figures, and export the
notebook as a pdf to be included in your written submission.

Extra Problem: Parallel Parking with RRT

Extra problem is required for students taking AA 274A/CS 237A/EE 260A for 4 credits

In problem 2 we considered the extension of Rapidly-exploring Random Trees (RRTs) to the case of kinody-
namic constraints, specifically modeling the robot as a Dubins car. In this problem we will consider another
practical extension – to the case of nontrivial robot geometry.

As discussed in lecture, one way to plan safe trajectories for a mobile robot with a nontrivial footprint is
to consider a sphere of radius r that encloses the robot’s body and to solve the planning problem with
all obstacles inflated by r, still treating the robot as a point. This strategy does ensure safety, but it
also engenders a potentially undesirable degree of conservatism which may make truly feasible problems
appear infeasible (consider, e.g., a particularly oblong robot for which the enclosing “safety bubble” would
contain mostly free space, or the “alpha” puzzle1 for which even the initial configuration would seem unsafe).
Fortunately, sampling-based motion planning algorithms (e.g., RRT) are designed to accommodate nontrivial
collision geometry through the black-box abstraction afforded by methods like COLLISION FREE.

In this question we will consider the problem of planning a parallel parking maneuver for a simple car. Since
parallel parking typically requires reversing in addition to driving forward, we will consider a Reeds-Shepp

1See https://parasollab.web.illinois.edu/resources/mpbenchmarks/data/mp/Alpha/ for details on this classic motion plan-
ning benchmark problem.
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car model. This model is similar to the Dubins car in that the magnitude of its speed is fixed but in this
case it may be applied forward or backward. Also like the Dubins car, an analytical shortest-path steering
solution exists for the Reeds-Shepp car (see [4] for details).

(i) Implement the necessary methods of ParkingRRT in P4_parallel_parking.py to account for both
(i) Reeds-Shepp steering (as opposed to geometric, i.e., straight-line, steering or Dubins steering) and
(ii) collision checking for the car as a rigid body (as opposed to a point). Computing steering solutions
in this code relies on installing the following python package:

$ pip3 install reeds-shepp

See https://github.com/ghliu/pyReedsShepp for usage details.2

Installation notes for reeds-shepp:
If you are prompted to install Microsoft Visual C++ Build Tools, you can find them here https:
//visualstudio.microsoft.com/visual-cpp-build-tools/. However, we highly recommend using
MacOS or Linux to complete this part of the problem since installation has proven difficult on Windows.
Farmshare and genbu are good resources to access a Linux environment. Another option is to use
Google Colab to run your jupyter notebook. In Colab, you can install reeds-shepp using

!pip3 install reeds-shepp

(ii) Test your implementation in the parking scenario provided in the following notebook:

$ jupyter notebook sim_parallel_parking.ipynb

Generate the associated figure and export the notebook as a pdf to be included in your written sub-
mission.

2Note that reeds shepp.path sample actually returns tuples of 5 numbers not 3 as written; the last two numbers encode
controls (corresponding to whether the car is turning left/straight/right or moving forward/backward). Dealing with somewhat
half-baked code/impartially documented code is one of the realities of being a roboticist, and arguably one of the learning
objectives of this class. Contributing back to the community, e.g., making a pull request to update the reeds shepp API to be
in line with the new dubins API (https://github.com/AndrewWalker/pydubins/pull/8) would be a cool mini-project!
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