
Principles of Robot Autonomy I

Problem Set 1

Due Tuesday, October 5 (11:59pm PT)

Several different software tools will be utilized throughout the course. To complete this assignment, make
sure you have the following tools installed on your computer:

1. Git: a version control system for software development, an essential tool for software collaboration.

2. Python version 3.X

3. Jupyter Notebook: A web application for interactive code development and prototyping.

Starter code for this problem set has been made available online through GitHub. To get started, download
the code by running git clone https://github.com/PrinciplesofRobotAutonomy/AA274A_HW1.git in a
terminal window.

You will submit your homework to Gradescope. Your submission will consist of (1) a single pdf with your

answers for written questions (denoted by the symbol) and (2) a zip folder containing your code (and any

relevant files and plots) for the programming questions (denoted by the symbol).

Your written part must be typeset (e.g., LATEX or Word).

Also note this problem set represents the start of an incremental journey to build our robot autonomy stack.
Thus, full completion of the coding modules in this set is key, as your implementation will be leveraged in
the next problem set and in the final project.

Introduction

The goal of this problem set is to familiarize you with some of the techniques for controlling nonholonomic
wheeled robots. The nonholonomic constraint here refers to the rolling without slipping condition for the
robot wheels which leads to a non-integrable set of kinematic constraints. In this problem set we will consider
the simplest nonholonomic wheeled robot model, the unicycle, shown below in Figure 1.

The kinematic model we will use reflects the rolling without side-slip constraint, and is given below in Eq. (1).

ẋ(t) = V cos(θ(t)),

ẏ(t) = V sin(θ(t)),

θ̇(t) = ω(t).

(1)

In this model, the robot state is x = (x, y, θ), where (x, y) is the Cartesian location of the robot center and
θ is its heading with respect to the x-axis. The robot control inputs are u = (V, ω), where V is the velocity
along the main axis of the robot and ω is the angular velocity, subject to the control constraints:

|V (t)| ≤ 0.5 m/s, and |ω(t)| ≤ 1.0 rad/s.

1

https://git-scm.com/about
https://www.python.org/
https://jupyter.org/install

Stanford University Principles of Robot Autonomy I - Fall 2021

Figure 1: Unicycle robot model

We’ll start by exploring how we might generate dynamically feasible trajectories and their associated open-
loop control sequences. However, the presence of un-modeled effects, external disturbances, and/or time
sampling may lead to open-loop control being ineffective on real systems. In the second part of the problem
set, we will focus on closed-loop control strategies for these systems that can reject these disturbances and
provide robustness.

Problem 1: Trajectory Generation via Differential Flatness

Consider the dynamically extended form of the robot kinematic model:

ẋ(t) = V cos(θ(t)),

ẏ(t) = V sin(θ(t)),

V̇ (t) = a(t),

θ̇(t) = ω(t),

(2)

where the two inputs are now (a(t), ω(t)). Differentiating the velocities (ẋ(t), ẏ(t)) once more yields[
ẍ(t)
ÿ(t)

]
=

[
cos(θ) −V sin(θ)
sin(θ) V cos(θ)

]
︸ ︷︷ ︸

:=J

[
a
ω

]
:=

[
u1
u2

]
.

Note that det(J) = V . Thus for V > 0, the matrix J is invertible. The outputs (x, y) are known as the flat
outputs for the unicycle robot, which means we may use virtual control inputs (u1(t), u2(t)) to design the
trajectory (x(t), y(t)), then invert the equation above to obtain the corresponding control histories a(t) and
ω(t).

In this problem, we will design the trajectory (x(t), y(t)) using a polynomial basis expansion of the form

x(t) =

n∑
i=1

xiψi(t), y(t) =

n∑
i=1

yiψi(t),

where ψi for i = 1, . . . , n are the basis functions, and xi, yi are the coefficients to be designed.

(i) Take the basis functions ψ1(t) = 1, ψ2(t) = t, ψ3(t) = t2, and ψ4(t) = t3. Write a set of linear
equations in the coefficients xi, yi for i = 1, . . . , 4 to express the following initial and final conditions:

x(0) = 0, y(0) = 0, V (0) = 0.5, θ(0) = −π/2,
x(tf) = 5, y(tf) = 5, V (tf) = 0.5, θ(tf) = −π/2,

2

Stanford University Principles of Robot Autonomy I - Fall 2021

where tf = 15.

(ii) Why can we not set V (tf) = 0?

(iii) Implement the following functions in P1_differential_flatness.py to compute the state-trajectory
(x(t), y(t), θ(t)), and control history (V (t), ω(t)):

• compute_traj_coeffs to compute the coefficients xi, yi, for i = 1, . . . , 4.

• compute_traj to use the coefficients to compute the state trajectory [x, y, θ, ẋ, ẏ, ẍ, ÿ] from t = 0
to t = tf .

• compute_controls to compute the actual robot controls (V, ω) from the state trajectory.

Run the script in the terminal by typing

$ python3 P1_differential_flatness.py

to see your trajectory optimization in action.

(iv) You may have noticed that in this process, we didn’t specify that our robot is constrained to have
a maximum speed Vmax = 0.5 and maximum angular velocity of ωmax = 1, and in fact, the resulting
trajectory violates these constraints!

Since there are only 4 basis polynomials and 4 constraints each for x and y, we get a unique solution
that satisfies the constraints in part (i), but this solution may not necessarily satisfy the control
constraints. Some ways to circumvent this are to (1) increase the number of basis polynomials and
solve a constrained trajectory optimization problem, (2) increase the value of tf until the control history
becomes feasible (this can be very suboptimal), or (3) “edit” the infeasible trajectory, by re-scaling
the velocity trajectory while keeping the geometric aspects of the trajectory the same. We will adopt
option (3).

First, we need to reparameterize the trajectory (x(t), y(t), θ(t)) from being a function of time t to a
function of arc-length s, which is the distance traveled along the path from the starting point. In this
way, s(t) =

∫ t

0
V (τ)dτ represents how far along the trajectory we are at time t, and (x(s), y(s), θ(s))

represent the state at that arc-length.

Now, in order to satisfy control constraints, we can follow this geometric trajectory at a different pace,
applying a different velocity as a function of s, Ṽ (s). However, note that choosing Ṽ also defines a
new angular velocity ω̃. This occurs since the kinematic equation θ̇(t) = ω(t) can be written as:

dθ(s)

ds
ṡ = ω(s),

by using the chain rule. Thus, noting that from the original trajectory ṡ = V > 0 the geometric path
θ(s) satisfies:

dθ(s)

ds
V (s) = ω(s).

The new trajectory will also have to satisfy the same kinematic equation:

dθ̃(s)

ds
Ṽ (s) = ω̃(s),

and we also want to keep the same geometric path:

dθ̃(s)

ds
=
dθ(s)

ds
,

Therefore, it can be seen that:
ω(s)

V (s)
=
ω̃(s)

Ṽ (s)
.

3

Stanford University Principles of Robot Autonomy I - Fall 2021

Once the new velocity profile Ṽ (s) is chosen the new angular velocity profile is defined by ω̃(s) =

Ṽ (s) ω(s)
V (s) .

Once Ṽ (s) and ω̃(s) are defined, they need to be mapped back into functions of time. To accomplish

this we can define a function τ(s) that maps each s to a new time t by leveraging the fact that Ṽ (s) = ds
dt

and integrating (choosing τ(0) = 0):

τ(s) =

∫ t

0

dt′ =

∫ s

0

ds′

Ṽ (s′)
.

Note that it is important that Ṽ (s) > 0 so that ṡ > 0 and therefore the mapping between time and s
is one-to-one (i.e. τ(s) is invertible).

Implement the remaining functions in P1_differential_flatness.py:

• compute_arc_length which computes s at each point of the trajectory computed in part (iii).

• rescale_V which chooses Ṽ at each point along the original trajectory, ensuring that the resulting
Ṽ and ω̃ satisfy the control constraints.

• compute_tau which uses Ṽ and s to compute the new time profile.

• rescale_om which computes the adjusted angular velocity ω̃ from Ṽ and the original (V, ω).

Run the script again to check your results! The new trajectory should take the same geometric
path, but take a longer time to satisfy the control constraints. The resulting plot will be saved to
plots/differential_flatness.png.

(v) Please include differential_flatness.png in your write up.

(vi) Now, let’s see what happens when we execute these actions on a system with disturbances. To do
so, open the visualization Jupyter notebook by running the following command:

$ jupyter notebook sim_trajectory.ipynb

This notebook will use the code you wrote for the this problem to plan trajectories for the initial and
final states specified in the notebook. Run the cells up until the closed loop simulation to validate your
work up to this point. You should see that the planned trajectory indeed reaches the goal, while in
the presence of noise, executing actions open-loop causes the trajectory to deviate. Experiment with
different initial and final states to see how the system behaves! Each time you run the plotting code
it will save the plot to plots/sim_traj_openloop.pdf. Include a plot with the initial conditions given
in part (i) in your write up.

Closed-Loop Control

Clearly, in order to deal with unmodeled effects and noise, we need to use feedback control. However, the
nonholonomic nature of the system raises some challenging controllability issues. Chiefly, it can be shown that
the unicycle cannot be stabilized around any pose (position & orientation) using smooth (or even continuous)
time-invariant feedback control laws [1] (Brockett’s Theorem). This result has prompted extensive research
in various control strategies such as smooth time-varying control laws, discontinuous control laws, and
feedback linearization. In contrast to the pose stabilization problem, the trajectory tracking problem is
significantly simpler. In this problem set you will experiment with a discontinuous kinematic pose controller
and a smooth dynamic trajectory tracking controller for the unicycle model1, thereby imbuing your robot
with some robustness.

1Note that many of the control laws discussed in this problem set can also be extended to related nonoholonomic robot
models, e.g., a rear/front wheel drive robot with forward steering and a trailer/car combination. Interested students are referred
to [2].

4

Stanford University Principles of Robot Autonomy I - Fall 2021

Problem 2: Pose Stabilization

We will now study closed-loop control for pose stabilization, i.e., stabilizing the robot around some desired
position and orientation. For consistency, we will set the desired goal position to be (xg, yg) = (5, 5) and
desired pose as θg = −π/2. One way to get around Brockett’s controllability result, which prevents the use
of smooth time-invariant state-feedback control laws, is to use a change of variables.

Figure 2: New coordinate system

In Figure 2, α represents the bearing angle and (ρ, δ) represent the robot’s polar coordinate position, all
with respect to the goal. In these new coordinates our kinematic equations of motion become:

ρ̇(t) = −V (t) cos(α(t)),

α̇(t) = V (t)
sin(α(t))

ρ(t)
− ω(t),

δ̇(t) = V (t)
sin(α(t))

ρ(t)
.

(3)

The pose stabilization problem is now equivalent to driving the state (ρ, α, δ) to the unique equilibrium
(0, 0, 0). In these coordinates, Brockett’s condition no longer applies, so we can use the simple (smooth)
control law

V = k1ρ cos(α),

ω = k2α+ k1
sin(α) cos(α)

α
(α+ k3δ),

(4)

where k1, k2, k3 > 0. Note that the kinematic equation (3) is undefined at ρ = 0. However, the control law
above drives the robot to the desired goal asymptotically (i.e., as time goes to infinity) so we never have to
worry about the equations becoming undefined. Furthermore, note that this control law is still discontinuous
in the original coordinates, as necessary due to Brockett’s result.

(i) Complete the function compute_control in the PoseController class in P2_pose_stabilization.py
and program the control law above. The goal position and controller gains k1, k2, k3 are member
variables of the class.

(ii) Validate your work. Open the visualization Jupyter notebook by running the following command:

5

Stanford University Principles of Robot Autonomy I - Fall 2021

$ jupyter notebook sim_parking.ipynb

Test your controller with different initial positions and goal poses to simulate different parking scenarios.
For each section of the notebook, choose initial and final poses to demonstrate forward, reverse, and
parallel parking scenarios.

(iii) The plots will be saved as plots/sim_parking_<parking-type>.png. Please include all three plots
(forward, reverse, and parallel) in your write up.

Hints: (1) You should use the function wrapToPi also present in utils.py to ensure that α and δ remain
within the range [−π, π]. This is needed since the control law has terms linear in α and δ. (2) Use the
function np.sinc to handle values α ≈ 0 in the control law for ω above. (3) You are free to choose the
gains k1, k2, and k3 (try staying between (0, 1.5]), however, do not be too aggressive since we have saturation
limits!

Note: It is possible to extend this method to allow path tracking [3] however we will adopt a simpler and
more elegant approach for tracking trajectories.

Problem 3: Trajectory Tracking

We will now address closed-loop control for both trajectory tracking using the differential flatness approach,
as well as parking using the non-linear kinematic controller from Problem 2. Consider the trajectory designed
in Problem 1 (we will refer to the center coordinates of this desired trajectory as (xd, yd)). We will implement
the following virtual control law for trajectory tracking:

u1 = ẍd + kpx(xd − x) + kdx(ẋd − ẋ)

u2 = ÿd + kpy(yd − y) + kdy(ẏd − ẏ)
(5)

where kpx, kpy, kdx, kdy > 0 are the control gains.

(i) Write down a system of equations for computing the true control inputs (V, ω) in terms of the
virtual controls (u1, u2) = (ẍ, ÿ) and the vehicle state. HINT: it includes an ODE.

(ii) Complete the compute_control function in the TrajectoryTracker class which is defined in the
file P3_trajectory_tracking.py. Specifically, program in the virtual control law Eq. (5) to compute
u1 and u2, and integrate your answer from (i) to convert (u1, u2) into the actual control inputs (V, ω).

Hint: At each timestep you may consider the current velocity to be that commanded in the previous
timestep. The controller class is designed to save this as the member variable self.V_prev

Warning: You must be careful when computing the actual control inputs due to the potential singu-
larity in velocity discussed in Problem 1 — although we took care to ensure that the nominal trajectory
did not have V ≈ 0 it is possible that noise might cause this to singularity to occur. If the actual
velocity drops below the threshold V_PREV_THRES, you should “reset” it to the nominal velocity.

(iii) Validate your work. Open the trajectory tracking visualization notebook:

$ jupyter notebook sim_trajectory.ipynb

Run the closed loop simulation section and see if using the controller, the robot can now track the
planned trajectory even in the presence of noise. Feel free to experiment with different initial and final
states, as well as different amounts of noise or different controller gains.

Each run will save a plot in plots/sim_traj_closedloop.png. Run the script with the initial and final
positions as given in Problem 1 and a nonzero noise amount, and include the resulting plot in your
write up.

6

Stanford University Principles of Robot Autonomy I - Fall 2021

Note: It is possible to modify the flatness-based trajectory tracking controller to also allow pose stabilization.
See [4] for details.

These techniques will be core components of the trajectory generation and control modules of our autonomy
stack. However, you may notice that so far our trajectory generation neglects key constraints such as the
presence of obstacles. Thus, in Problem Set 2 we will integrate these components with motion planning
algorithms to find and track feasible trajectories through cluttered environments.

Extra Problem: Optimal Control and Trajectory Optimization

Extra problem is required for students taking AA 274A/CS 237A/EE 260A for 4 credits
Let’s revisit the problem of designing a dynamically feasible trajectory. In Problem 1, we only were interested
in finding a trajectory that connected the starting state to the goal state in a dynamically feasible manner.
However, there are often many such dynamically feasible trajectories, and we might prefer some to others.
In this problem, we will utilize tools from optimal control to design a trajectory that explicitly optimizes a
given objective.

Consider the kinematic model of the unicycle given in (1). Suppose the objective is to drive from one
waypoint to the next waypoint with minimum time and energy, i.e., we want to minimize the functional

J =

∫ tf

0

[
λ+ V (t)2 + ω(t)2

]
dt,

where λ ∈ R≥0 is a weighting factor and tf is free. We’ll use the following initial and final conditions, which
are the same as in Problem 1.

x(0) = 0, y(0) = 0, θ(0) = −π/2,
x(tf) = 5, y(tf) = 5, θ(tf) = −π/2.

(i) Transcribe this optimal control problem into a finite dimensional constrained optimization problem.

(ii) Complete optimize_trajectory within P4_optimal_control.py, implementing a direct method

for optimal control using scipy.optimize.minimize.2 Run python3 P4_optimal_control.py to test
your code. In particular, it will generate two plots of the trajectory (x(t), y(t)) and the control his-
tory (V (t), ω(t)) corresponding to weighting factors λ = 1.0 and 0.2. The plots will be saved to
plots/optimal_control_1.0.png and plots/optimal_control_0.2.png. Use these to verify that the
control constraints and boundary conditions are met, and that the solution trajectories are smooth.

(iii) Please include plots/optimal_control_1.0.png and plots/optimal_control_0.2.png in your
write up. Compare the results with the trajectory obtained through the differential flatness approach
in Problem 1.

(iv) Explain the differences that you see with the different choices of λ.

References

[1] R. W. Brockett, “Asymptotic stability and feedback stabilization,” Differential geometric control theory,
vol. 27, no. 1, pp. 181–191, 1983.

[2] A. De Luca, G. Oriolo, and C. Samson, “Feedback control of a nonholonomic car-like robot,” in Robot
motion planning and control. Springer, 1998, pp. 171–253.

2See https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html.

7

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html

Stanford University Principles of Robot Autonomy I - Fall 2021

[3] M. Aicardi, G. Casalino, A. Bicchi, and A. Balestrino, “Closed loop steering of unicycle like vehicles via
lyapunov techniques,” IEEE Robotics & Automation Magazine, vol. 2, no. 1, pp. 27–35, 1995.

[4] G. Oriolo, A. De Luca, and M. Vendittelli, “Wmr control via dynamic feedback linearization: design,
implementation, and experimental validation,” IEEE Transactions on control systems technology, vol. 10,
no. 6, pp. 835–852, 2002.

8

