
AA274A: Principles of Robot Autonomy I
Course Notes

The previous chapter began an introduction to the problem of robotic perception, which
consists of tasks related to sensing and understanding the robot’s own movements as well as
the environment in which it operates. This chapter continues that discussion by diving more
deeply into one of the most powerful and challenging tools in robotic perception: computer
vision. In particular, this chapter will focus on some of the fundamental mathematical tools
for calibrating cameras and processing their images to extract some useful information about
the scene.

9 Camera Models and Camera Calibration

As was discussed in the previous chapter, cameras provide a crucial sensing modality in
the context of robotics. This is generally due to the fact that images inherently contain
an enormous amount of information about the environment. However, while images do
contain a lot of information, extracting the information that is relevant to the robot is quite
challenging. One of the most basic tasks related to image processing is determining how
a particular point in the scene maps to a point in the camera image, which is sometimes
referred to as perspective projection. Last chapter, the pinhole camera model and the thin
lens model were presented, and in this chapter the pinhole camera model is leveraged to
further explore perspective projection1.

9.1 Perspective Projection

The pinhole camera model, shown graphically in Figure 1, can be used to mathematically
define relationships between points P in the scene and points p on the image plane. Notice
that any point P in the scene can represented in two ways: in camera frame coordinates
(denoted as PC) or in world frame coordinates (denoted as PW ). The overall objective of
this section is to find derive a mathematical model that can be used to map a point PW
expressed in world frame coordinates to a point p on the image plane. To accomplish this
two transformations are combined together, namely a transformation of P from world frame
coordinates to camera frame coordinates (PW to PC) and a transformation from PC to p.

1All results also hold under the thin lens model, assuming the camera is focused at ∞.
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Figure 1: Graphical representation of the pinhole camera model. In this model the point O
is the camera center, c is the image center, and f is the focal length of the camera. It is
assumed that all light rays from point P in the scene pass through point O and are captured
on the image plane at point p.

9.1.1 Mapping Camera Frame Coordinates to Image Coordinates (PC −→ p)

The first step considered is the mapping from a point in the scene expressed in camera frame
coordinates, PC , to the corresponding point on the image plane, p, using the pinhole camera
model. Recall from the previous chapter the pinhole camera equations:

x = f
XC

ZC
, y = f

YC
ZC

, (1)

where PC = (XC , YC , ZC), p = (x, y), and f is the focal length of the pinhole camera2.
Note that the quantities x and y are coordinates in the camera frame, but it is often

desirable to express the point p in terms of pixel coordinates. However, pixel coordinates are
generally defined with respect to a reference frame in the lower corner of the image plane
(to avoid negative coordinates). This new reference frame is shown in Figure 2, where the

image center c is defined in this new reference frame with coordinates (x̃0, ỹ0), where (̃·) is
the notation used to denote a coordinate with respect to this new reference frame. In this
new reference frame, the point PC gets mapped to the coordinates (x̃, ỹ) by:

x̃ = f
XC

ZC
+ x̃0, ỹ = f

YC
ZC

+ ỹ0. (2)

Finally, these new coordinates can be mapped to pixel coordinates if the number of pixels
per unit distance are known. In particular, the point PC is mapped to pixel coordinates
(u, v) by:

u = α
XC

ZC
+ u0, v = β

YC
ZC

+ v0, (3)

where α = kxf , u0 = kxx̃0, β = kyf , v0 = kyỹ0, and kx and ky are the number of pixels per
unit distance in image coordinates.

2The z term of p is generally not included simply because z = f is a fixed value.
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Figure 2: A new reference frame with coordinates denoted by (̃·) is defined with its origin
in the lower corner of the image plane. The image center coordinates in this new frame are
denoted (x̃0, ỹ0).

Homogeneous Coordinates: Note that the transformation from the point PC in camera
frame coordinates to p in pixel coordinates given by (3) is not linear. However, this transfor-
mation can be represented as a linear mapping3 through an additional change of coordinates.
In particular, the points PC and p will be expressed in homogeneous coordinates.

For a 2D point (x1, x2) or a 3D point (x1, x2, x3) in Euclidean space, the point can be
represented in homogeneous coordinates by the transformation:

(x1, x2) =⇒ (αx1, αx2, α), and (x1, x2, x3) =⇒ (αx1, αx2, αx3, α), (4)

for any α 6= 0. These new coordinates are called homogeneous coordinates because the scaling
factor α can be chosen arbitrarily as long as α 6= 0. A set of homogeneous coordinates can
then be transformed back by:

(y1, y2, y3) =⇒
(y1
y3
,
y2
y3

)
, and (y1, y2, y3, y4) =⇒

(y1
y4
,
y2
y4
,
y3
y4

)
. (5)

To denote when a point is described in homogeneous coordinates the superscript h will
be used. For example, the point PC = (XC , YC , ZC) in camera frame coordinates can be
expressed by:

P h
C = (XC , YC , ZC , 1),

by choosing α = 1, and the point p = (u, v) in pixel coordinates can be expressed in
homogeneous coordinates by:

ph = (ZCu, ZCv, ZC) = (αXC + u0ZC , βYC + v0ZC),

by choosing α = ZC and substituting the expressions (3). With the expression of these
points in homogeneous coordinates it can be seen that their relationship is transformed from
the nonlinear relationship (3) to the linear relationship:α 0 u0 0

0 β v0 0
0 0 1 0



Xc

Yc
Zc
1

 =

αXc + u0Zc
βYc + v0Zc

Zc

 . (6)

3Expressing the perspective projection as a linear map will simplify the mathematics later on.
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Often in practice a skewness parameter γ is also added (which generally ends up being
close to 0), and this relationship can be written in the more compact form:

[
K 03×1

]
P h
C = ph, K =

α γ u0
0 β v0
0 0 1

 . (7)

The matrix K defined in (7) is sometimes referred to as the camera matrix or matrix of
intrinsic parameters. It is referred to in this way because it contains the five parameters
that define the fundamental characteristics of the camera (from the perspective of the pinhole
camera model). While these parameters may be specified by the camera manufacturer, they
are often extracted by performing a camera calibration.

9.1.2 Mapping World Coordinates to Camera Coordinates (PW −→ PC)

Recall from Figure 1 that a point P in the scene can either be expressed in terms of camera
frame coordinates PC or world frame coordinates PC . While the previous section discussed
the use of the pinhole model to map PC coordinates to pixel coordinates p, this section will
discuss the mapping between the camera and world frame coordinates of the point P (see
Figure 3).

Figure 3: A depiction of the point P expressed either in camera coordinates, PC , or in world
frame coordinates, PW . The world frame origin is denoted by OW and the camera frame
origin is denoted by O.

From Figure 3 it can be seen that PC can be written as:

PC = t+ q, (8)

where t is the vector from O to OW expressed in camera frame coordinates and q is the
vector from OW to P expressed in camera frame coordinates. However, the vector q is in
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fact the same vector as PW , just expressed in different coordinates (i.e. with respect to a
different frame). The coordinates can be related by a rotation:

q = RPW , (9)

where R is the rotation matrix relating the camera frame to world frame and is defined as:

R =

 iw · i jw · i kw · i
iw · j jw · j kw · j
iw · k jw · k kw · k

 , (10)

where i, j, and k are the unit vectors that define the camera frame and iw, jw, and kw are
the unit vectors that define the world frame. To summarize, the point PW can be mapped
to camera frame coordinates PC as:

PC = t+RPW , (11)

where t is the vector in camera frame coordinates from O to OW and R is the rotation matrix
defined in (10). Similar to the previous section, these expressions can also be equivalently
expressed for the case where the points PW and PC are expressed in homogeneous coordinates:(

PC
1

)
=

[
R t

01×3 1

](
PW
1

)
. (12)

9.1.3 Mapping World Frame Coordinates to Image Coordinates (PW −→ p)

The original objective of perspective projection was to find a way to mathematically relate
the position of a point P in world frame coordinates (denoted PW ) to the corresponding
pixel coordinates p on the image plane. With the relationship (12) developed for mapping
PW to the camera frame coordinates PC , and the relationship (7) for mapping PC to pixel
coordinates p, the direct mapping from PW to p can now be defined. In particular, simply
combining the two transformation together yields:

ph =
[
K 03×1

] [ R t
01×3 1

]
P h
W ,

which can then be simplified to:

ph = K
[
R t

]
P h
W . (13)

In (13), P h
W is the homogeneous coordinate representation of PW and ph is the homogeneous

coordinate representation of p. Additionally, recall that the matrix K ∈ R3×3 is the matrix of
intrinsic camera parameters, and the matrix [R t] ∈ R3×4 contains extrinsic parameters (i.e.
that describe the camera’s position and orientation relative the points in the scene). Note
that the total number of degrees of freedom is 11, where 5 are from the intrinsic parameters
that define K, 3 are from the rotation matrix R, and 3 are from the position vector t.
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9.2 Camera Calibration: Direct Linear Method

Before the expression (13) can be used in practice, the camera’s intrinsic and extrinsic
parameters need to be determined (i.e. K, R, and t). One approach is to use the direct linear
transformation method for camera calibration, which requires a set of known correspondences
pi ←→ PW,i for i = 1, . . . , n.

Figure 4: An example of camera calibration. Here, we know the relationship between the
red point PW,i in the world and pi in the image plane.

9.2.1 Direct Linear Calibration: Step 1

First, each corresponding pair of points pi = (ui, vi) and PW,i = (XW,i, YW,i, ZW,i) is written
in homogeneous coordinates and the expression (13) is used to write:

phi = MP h
W,i, i = 1, ....n (14)

where M = K[R t] is referred to as the homography. The first step of the camera calibration
process is to use the n correspondences to compute the homography M , and then later the
intrinsic and extrinsic parameters can be extracted from M . To determine M , a useful first
step is to rewrite M in terms of its rows:

M =

m1

m2

m3

 , (15)

where mi ∈ R1×4 is the i-th row of M . By considering the rows of M individually, the
relationship (14) can be written as:αuiαvi

α

 =

m1 · P h
W,i

m2 · P h
W,i

m3 · P h
W,i

 , i = 1, ....n
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which by mapping the homogeneous coordinates phi back to the original coordinates pi yields
the 2n expressions:

ui =
m1 · P h

W,i

m3 · P h
W,i

, i = 1, . . . , n

vi =
m2 · P h

W,i

m3 · P h
W,i

, i = 1, . . . , n,

or equivalently (via algebraic manipulation) the expressions:

ui(m3 · P h
W,i)− (m1 · P h

W,i) = 0, i = 1, . . . , n

vi(m3 · P h
W,i)− (m2 · P h

W,i) = 0, i = 1, . . . , n.
(16)

Now, these 2n equations can be combined together in one large matrix equation:

P̃m = 0, m =

mT
1

mT
2

mT
3

 , (17)

where m ∈ R12×1 is a vector consisting of the stacked rows of M and P̃ ∈ R2n×12 is a matrix
of known coefficients determined by the quantities ui, vi, and P h

W,i. For a more concrete

representation of how P̃ is defined, the first couple rows are given by:

P̃ =


−(P h

W,1)
T 01×4 u1(P

h
W,1)

T

01×4 −(P h
W,1)

T v1(P
h
W,1)

T

−(P h
W,2)

T 01×4 u2(P
h
W,2)

T

...
...

...

 . (18)

Note that n ≥ 6 (i.e. at least 6 correspondences have been made) is a requirement to ensure
that m can be uniquely defined. Ideally, with this sufficient number of correspondences the
equation (18) could be directly solved. However, in practice a more robust procedure is to
build P̃ with more than 6 points, which would lead to an overdetermined set of equations that
may not have a solution4! Therefore, the determination of m is accomplished by formulation
the optimization problem:

min.
m
‖P̃m‖2,

s.t. ‖m‖2 = 1,
(19)

where the constraint ‖m‖2 = 1 is required to ensure that the optimization problem does
not simply choose mi = 0 for each i = 1, . . . , 12. This optimization problem is called a
constrained least-squares problem.

4This is particularly true in real-world applications where noise corrupts the data.
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Example 9.1 (Constrained Least-Squares). The constrained least squares problem

min.
x
‖Ax‖2,

s.t. ‖x‖2 = 1,

with x ∈ Rn and A ∈ Rm×n and m > n is a finite-dimensional optimization problem.
Consider the corresponding Lagrangian:

L = xTATAx+ λ(1− xTx),

and the necessary optimality conditions:

∇xL = 2(ATA− λI)x = 0,

∇λL = 1− xTx = 0.

The first NOC can be rewritten as ATAx = λx, and therefore any x that satisfies this
condition must be an eigenvector of the matrix ATA. Additionally, while all the eigenvectors
satisfy this condition the minimizer is the eigenvector associated with the smallest eigenvalue.
This eigenvector can efficiently be computed by a singular value decomposition of A = UΣV T

and then choosing m to be the column of V associated with the smallest singular value (since
ATA = V Σ2V T ).

9.2.2 Direct Linear Calibration: Step 2

Once the optimization problem (19) has been solved for m the homography M is completely
defined. The next step in the camera calibration process is to extract the intrinsic and
extrinsic camera parameters from the matrix M . For this section the matrix M is expressed
in terms of its columns:

M =
[
c1 c2 c3 c4

]
,

where ci is the i-th column of M . It is now possible to factorize M as:

M = K
[
R t

]
, (20)

by taking the first three columns of M and performing a RQ factorization:[
c1 c2 c3

]
= KR, (21)

where R is an orthogonal matrix and K is an upper triangular matrix. Once K is known
the vector t can be computed by t = K−1c4.

9.2.3 A Flexible Camera Calibration Method [Zha00]:

The homography M is defined for a specific set of extrinsic parameters R and t. In practice
it might be desirable to estimate the camera’s intrinsic parameters from N different images
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from different perspectives (and therefore with N different homographies). In this case the
procedure described in [Zha00] can be used to extract the intrinsic parameters K.

This approach begins by assuming that the known points PW for each individual image
lie on a plane. For example the calibration “scene” might consist of a pattern (e.g. a
checkerboard pattern) on a planar surface. In this case, it can simply be assumed that the
world frame origin also lies on this plane such that ZW = 0 for all points on the plane. Since
ZW = 0 the relationship between ph and P h

W given by (13) can be simplified to:

ph = M̃P̃ h
W , (22)

with
M̃ = K

[
r1 r2 t

]
, P̃ h

W =
[
XW YW 1

]T
, (23)

where M̃ is the simplified homography matrix, P̃ h
W is the simplified position of the point

P in world frame written in homogeneous coordinates, and ri is the i-th column of the
rotation matrix R. Note that the homography matrix M̃ can still be estimated using the
same procedure discussed before.

A set of constraints on the intrinsic parameter matrix K are next identified by writing
the homography M̃ as: [

c̃1 c̃2 c̃3
]

=
[
Kr1 Kr2 Kt

]
.

This relationship, and the knowledge that r1 and r2 are orthonormal, leads to the following
constraints:

c̃T1Bc̃2 = 0, c̃T1Bc̃1 = c̃T2Bc̃2, (24)

where B = K−TK−1 ∈ R3×3 is a symmetric matrix. Solving for the intrinsic camera pa-
rameters K can therefore be accomplished by using the constraints (24) to solve for the
symmetric matrix B, and then to use the definition of B to back out the parameters that
define K.

Several useful tricks can be employed to compute the matrix B from the constraints
(24). The main trick is to notice that even though B consists of nine parameters, since it
is symmetric only six parameters are required to fully specify it. Therefore B ∈ R3×3 is
reparameterized as a vector b ∈ R6 as:

b =
[
B11 B12 B22 B13 B23 B33

]T
. (25)

This reparameterization is useful because it allows us to rewrite the expression c̃Ti Bc̃j as:

c̃Ti Bc̃j = vTijb, (26)

where:

vij =
[
c̃i1c̃j1, c̃i1c̃j2 + c̃i2c̃j1, c̃i2c̃j2, c̃i3c̃j1 + c̃i1c̃j3, c̃i3c̃j2 + c̃i2c̃j3, c̃i3c̃j3

]T
,

where c̃ik is the k-th element of the column vector c̃i and c̃jk is the k-th element of the
column vector c̃j. With this reparameterization, the constraints (24) can be rewritten as:

c̃T1Bc̃2 = 0 =⇒ vT12b = 0

c̃T1Bc̃1 = c̃T2Bc̃2 =⇒ (v11 − v22)T b = 0,
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or by combining them: [
vT12

(v11 − v22)T
]
b = 0, (27)

which is linear in the unknowns b. Importantly, while the homographies M are different for
each image, the intrinsic camera parameters (i.e. the vector b) are the same! Therefore for N
images from the same camera (but with potentially different perspectives) these constraints
(27) can be stacked to give:

V b = 0, (28)

where V ∈ R2N×6. In the case where the skewness parameter γ is included in K there must
be N ≥ 3 images in order to specify B uniquely. Similar to how the homography for an
image M was computed in the previous section, the vector b will be specified by the solution
to the constrained least squares problem:

min.
b
‖V b‖2,

s.t. ‖b‖2 = 1.
(29)

Once b has been determined, the intrinsic camera parameters K can be solved for recalling
the definition of B = K−TK−1. In particular, the intrinsic parameters are given by:

v0 =
B12B13 −B11B23

B11B22 −B2
12

,

λ = B33 −
B2

13 + v0(B12B13 −B11B23)

B11

,

α =

√
λ

B11

,

β =

√
λB11

B11B22 −B2
12

,

γ =
−B12α

2β

λ
,

u0 =
γv0
β
− B13α

2

λ
,

(30)

where λ can be though of as a scaling parameter that accounts for the fact that there are
five unknown camera intrinsic parameters but six degrees of freedom in B.

Once the camera intrinsic parameters K have been extracted from this procedure, given
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any new homography M̃ the extrinsic parameters can be computed by:

r1 =
K−1c̃1
‖K−1c̃1‖

,

r2 =
K−1c̃2
‖K−1c̃2‖

,

r3 = r1 × r2,

t =
K−1c̃3
‖K−1c̃1‖

.

(31)

As one final step, it is noted that the matrix R defined with columns r1, r2, and r3 will
not in generally satisfy the properties of a rotation matrix (i.e. orthonormality). One final
step to this overall procedure is to correct this issue by finding the rotation matrix that best
corresponds to these column vectors. This is accomplished again by optimization, and in
particular by formulating the problem:

min.
R
‖R−Q‖2,

s.t. RTR = I,
(32)

where
Q =

[
r1 r2 r3

]
.

This problem is solved by choosing R = UV T where U and V are defined by the singular
value decomposition of Q = UΣV T .

9.3 Limitations

9.3.1 Radial Distortion

The pinhole camera model provides a nominal camera model for which it is relatively straight-
forward to develop a mathematical model of the perspective projection. However, in practice
this model is not a perfect representation of the imaging process. One such effect that is
not captured by the pinhole model is radial distortion, which is an effect seen in real lenses
where either barrel distortion or pincushion distortion will affect the real pixel coordinates.
Images showing both barrel and pincushion distortion are provided in Figure 5.

There are methods that can be used to correct for image distortion. A simple and efficient
way is to model the relationship between the ideal pixel coordinates (u, v) and the distorted
pixel coordinates (ud, vd) as:[

ud
vd

]
=

[
ud
vd

]
(1 + kr2)

[
u− ucd
v − vcd

]
+

[
ucd
vcd

]
(33)

where k ∈ R is the radial distortion factor, (ucd, vcd) are the pixel coordinates of the image
center, and r2 = (u− ucd)2 + (v − vcd)2 is the square of the distance between the ideal pixel
location and the center of distortion.. Note that k differs in different cameras and needs to
be pre-determined.
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Figure 5: Different kinds of radial distortions that are seen in real lenses, which may affect
the accuracy of the pinhole camera model.

9.3.2 Measuring Depth

Once the camera intrinsic and extrinsic parameters K, R, and t are known it is still not
possible to map pixel coordinates to the corresponding point in space. Mathematically this
is a result of the matrix M in (14) not being invertible, but intuitively this is because the
distance along the line of sight from p to P in Figure 1 can not be determined! An example
of this limitation is also given in Figure 6.

Figure 6: An image demonstrating the inability to measure depth from a single image.

However, there are some techniques that can enable depth estimates to be made with a
single camera. One approach is known as depth from focus, where several images are taken
until the projection of point P is in focus. Based on the thin lens model, when this occurs:

1

z
+

1

Z
=

1

f
,

where f is the focal length, Z is the depth of the point P in camera frame, and z is the depth
of the image plane in the camera frame when the projection of point P is in focus. Since f
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and z are known, the depth Z can therefore be computed. If two cameras are used, depth
estimation is possible via binocular reconstruction or stereo vision. This approach requires
known corresponding pixel coordinates p and p′ of each camera, and then uses triangulation
to determine the 3D position of the source point P in the scene.
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