
AA274A: Principles of Robot Autonomy I
Course Notes

The previous chapter introduced motion planning problems that are formulated with
respect to the robot’s configuration space (C-space). In particular, two specific approaches
for motion planning in C-space were discussed: grid-based methods and combinatorial plan-
ning methods. Grid-based methods discretize the continuous C-space into a grid, and then
use graph search methods such as A* to compute paths through the grid. Combinatorial
planners compute a roadmap that consists of a finite set of points in the C-space, but avoids
the use of a rigid grid structure. Planning with the roadmap then consists of connecting the
initial configuration and desired configuration to the roadmap, and then performing a graph
search to find a path along the roadmap.

Generally speaking, grid-based methods suffer from the rigidity of the discretization that
is performed. In contrast, combinatorial planners have much more flexibility because any
configuration q can be a part of the roadmap. However, both types of planners require a
complete characterization of the free configuration space (e.g. points in the configuration
space that don’t result in a collision with obstacles) in advance. In this chapter, a class of
motion planning algorithms is presented which builds a roadmap that is similar to combina-
torial planners, but without requiring a full characterization of the free configuration space.
Instead, these algorithms build roadmaps one point at a time by sampling a point in the
configuration space, and then querying an independent module to determine if the sample
is admissible. This class of planners are referred to as sampling-based methods.

7 Sampling-based Motion Planning

In contrast to the search-based motion planners discussed in the last chapter, sampling-based
methods leverage an independent module that can be queried to determine if a configuration
is admissible. In the context of robotics, an admissible configuration in motion planning
problems is often one that is collision-free and therefore this module is often referred to as
a collision detection module (or simply a collision checker). The collision detection module
is used to probe and incrementally build a roadmap in the configuration space, rather than
attempting to completely characterize the free space in advance (as is done in combinatorial
planners).

Sampling-based algorithms are a common choice for practical applications as they are
conceptually simple, flexible, relatively easy to implement, and can be extended beyond the

1



geometric case (i.e. they can consider differential constraints). The disadvantages of the
approach are typically with respect to theoretical guarantees, for example these approaches
cannot certify that a solution doesn’t exist. In this chapter the focus will be on two popular
sampling-based methods: probabilistic roadmaps (PRM) and the rapidly-exploring random
trees (RRT) algorithm. Additional techniques such as the fast-marching tree algorithm
(FMT*), kinodynamic planning, and deterministic sampling-based methods will also be
briefly mentioned.

7.1 Probabilistic Roadmap (PRM)

It is easiest to start with the probabilistic roadmap algorithm because it is conceptually
quite similar to combinatorial planners from the previous section. In particular, the PRM
algorithm also generates a topological graph G called a roadmap where the vertices are
configurations q in the free part of the configuration space Cfree, and edges connect the
vertices (and must also entirely lie in Cfree). Once the roadmap is generated, a motion plan
can be found for a given initial configuration qI and goal configuration qG by first connecting
them to the roadmap, and then using a graph-search algorithm (e.g. A*) to find a path
along the roadmap graph G. The difference between PRM and combinatorial planners lies
in the method in which the roadmap is generated.

The key insight of the PRM algorithm is that a complete characterization of the free
configuration space (which is computationally expensive) can be avoided by sampling con-
figurations q at random and then using a collision checker to validate if q ∈ Cfree. The
general outline of the algorithm follows:

1. Randomly sample n configurations qi from the configuration space.

2. Query a collision checker for each qi to determine if qi ∈ Cfree, if qi 6∈ Cfree then it is
removed from the sample set.

3. Create a graph G = (V,E) with vertices from the sampled configurations qi ∈ Cfree.
Define a radius r and create edges for every pair of vertices q and q′ where: (i) ‖q−q′‖ ≤
r and (ii) the straight line path between q and q′ is also collision free.

An example of the roadmap resulting from applying this algorithm is shown in Figure 1.
Note that using the connectivity radius r is a simple and efficient way of connecting the
sampled vertices without having a burdensome number of edges. This is desirable because
having too many edges is unnecessary, will make the graph-search more challenging, and will
require more collision checks to be made1. On the flip side, making the radius r too small
could mean not enough connections are made.

The downside of PRM is that finding good solutions may require a large number of
samples n to sufficiently cover the configuration space. Similar to why having too many
edges is not good, having too many samples will require a lot of queries of the collision
checker, which may be costly. However, there are some scenarios where building a roadmap

1Edge validation is usually performed by densely sampling the edge and checking for collisions at each.

2



Figure 1: Example solution found via the PRM algorithm. The blue dots represent the
randomly sampled vertices of the graph, and the blue lines represent the edges created
between vertices within a predefined radius r of each other. The pink dots represent the
initial configuration qI and goal configuration qG, and the pink line represents the solution
path along the roadmap that is found by a graph-search algorithm.

that completely covers the space Cfree is beneficial, namely in multi-query planning problems.
In multi-query problems, it is assumed that the motion planner will be called many times
for different initial qI and goal qG configurations. In this case the PRM graph can be built
once to cover Cfree, and then it can be reused as many times as needed. In other words,
the costly sampling and collision checking only needs to be done once at the start, so it may
be worth the “investment”. Note however that this only works if the environment stays the
same in between each query of the motion planner. If the environment changes, the entire
PRM roadmap would have to be rebuilt from scratch!

7.2 Rapidly-exploring Random Trees (RRT)

In multi-query problems where the environment does not change in between each query,
the probabilistic roadmap (PRM) algorithm offers the advantage of front-loading some work
to provide efficient queries later. However, many problems in robotics are alternatively
classified as single-query problems, where it is assumed that only a single query will be
made to the motion planner. A common single-query planning scenario arises from changing
environments, such as if there is a moving obstacle. In this case building up a roadmap over
the entire free configuration space Cfree may result in wasted effort. The RRT algorithm
solves this problem by incrementally sampling and building the graph, starting at the initial
configuration qI , until the goal configuration qG is reached. Additionally, the graph is built

3



as a tree, which is a special type of graph that has only one path between any two vertices
in the graph.

In general, the RRT algorithm begins by initializing a tree2 T = (V,E) with a vertex at
the initial configuration (i.e. V = {qI}). At each iteration the RRT algorithm then performs
the following steps:

1. Randomly sample a configuration q ∈ C.

2. Find the vertex qnear ∈ V that is closest to the sampled configuration q.

3. Compute a new configuration qnew that lies on the line connecting qnear and q such
that the entire line from qnear to qnew is contained in the free configuration space Cfree.

4. Add a vertex qnew and an edge (qnear, qnew) to the tree T .

Thus after each iteration only a single point is sampled and potentially added to the tree.
Additionally, every so often the sampled point q can be set to be the goal configuration qG.
Then, if the nearest point qnear can be connected to qG by a collision-free line the search
can be terminated. Intuitively, this approach works because of a phenomenon referred to as
the Voronoi bias, which essentially describes the fact that there is more “empty space” near
the nodes on the frontier of the tree. Therefore, a randomly sampled point is more likely to
be drawn in this “empty space”, causing the frontier to be extended (and therefore driving
exploration).

Note that variations on this standard algorithm exist, in particular there exist different
ways of connecting a sampled point to the existing tree. One popular variant that modifies
the way a sampled point is connected to the tree is known as RRT* (pronounced RRT star).
This modified RRT algorithm introduces a notion of optimality into the planner and will
in fact return an optimal solution as the number of samples approaches infinity. Another
variant of RRT is called RRT-Connect, which simultaneously builds a tree from both the
initial configuration qI and the goal configuration qG and tries to connect them.

7.3 Theoretical Results for PRM and RRT

One of the main challenges of sampling-based motion planning is that it is unclear how
many samples are needed to find a solution. However, some theoretical guarantees can be
provided regarding their asymptotic behavior (i.e. behavior as number of samples n −→
∞). In particular, both PRM3 and RRT are guaranteed4 to eventually find a solution if it
exists [LaV98, KSO94]. Regarding solution quality, it has been shown that PRM (with the
appropriate choice of the radius r) can find optimal paths as the number of samples n −→∞.
However, RRT can be arbitrarily bad with non-negligible probability [KF11].

2The tree is a graph, however since it has special structure it is denoted as T rather than G.
3With a constant connectivity radius r.
4These guarantees also require an assumption that the configuration space is bounded, for example if C

is the d-dimensional unit hypercube with 2 ≤ d ≤ ∞.

4



Figure 2: Example exploration tree by the RRT algorithm. The blue dots represent points
sampled at each iteration of the algorithm, which are connected to the nearest vertex that
is currently part of the tree.

7.4 Fast Marching Tree Algorithm (FMT*)

As previously mentioned, PRM is an asymptotically optimal algorithm which means that
with enough samples it will find good paths. However, in practice PRM with a large number
of samples also requires a lot of collision checks and is therefore costly. On the other hand,
RRT is fast but in general will not find good paths. FMT* is a an advanced sampling-based
motion planning algorithm that maintains the advantages of both of these algorithms (i.e.
fast and asymptotically optimal) [].

FMT* builds a tree structured graph in the same way RRT does (which maintains the
efficiency of RRT), but makes connections in a way that allows for asymptotic optimality.
In particular, the technique used for making new connections is referred to as dynamic pro-
gramming. Dynamic programming can be used to find the best paths with respect to a
cost-of-arrival, denoted c(q), which represents the cost to move from the initial configuration
qI to the configuration q. An example of a common metric is simply the Euclidean distance,
which would result in a “shortest” path. In the context of motion planning, dynamic pro-
gramming leverages Bellman’s principle of optimality, which states that the optimal paths
satisfy:

c(v) = min
u:‖u−v‖<rn

Cost(u, v) + c(u), (1)

where u are nodes within radius rn of node v, Cost(u, v) is the cost of an edge between u
and v, and c(u) is the cost-to-arrive at u. In words, this relationship says that the cost-
of-arrival at any configuration v on the optimal path is defined by searching over all local
neighboring configurations to find which would result in the best path. FMT* uses this

5



principle repeatedly every time it needs to connect a new sample to the tree. However,
in practice using the condition (1) is complicated by the fact that the resulting edge may
result in a collision. FMT* handles this by ignoring obstacles when using the condition
(1) to connect a new sample to the tree, and then if a collision occurs from the resulting
connection it is simply skipped and the algorithm moves on to a new sample. Therefore
this application of dynamic programming is referred to as lazy because it only checks for
collisions after the fact. It turns out that this substantially reduces the total amount of
collision checks required, and only leads to sub-optimality in rare cases.

Figure 3: Example of a step in FMT*. Suppose the sample v has been selected to be the next
point to be added to the tree. The candidate costs Cost(u1, v)+c(u1) and Cost(u2, v)+c(u2)
are evaluated to see which connection would minimize cv. Suppose u2 was selected by this
criteria (i.e. u2 satisfies (1)), then the collision checker would see that the edge (u2, v) results
in a collision and the sample v would be skipped (but could be added later).

7.5 Kinodynamic Planning

The geometric motion planning algorithms previously considered assume that the robot does
not have any constraints on its motion and only a collision-free solution is required. This
makes the planning task easier because two configurations q and q′ can be simply connected
by the planner with a straight line. However, robots do typically have kinematic/dynamical
constraints on their motion, and for some motion planning problems it is desirable or even
necessary to take those constraints into account. The problem of planning a path through
the free configuration space Cfree that satisfies a given set of differential constaints is referred
to as kinodynamic motion planning.

Similar to previous chapter, it is assumed that the robot operates in a state space X ⊆ Rn

and can apply controls u ∈ U ⊆ Rm, and that the motion constraints are given by the
differential model (i.e. from kinematic or dynamics constraints):

ẋ = f(x,u), (2)

where x ∈ Rn and u ∈ Rm. Note that the state space X is not necessarily the same as
the configuration space C, but the configuration q is derivable from the state x. As was

6



previously mentioned, the configuration space is something that can be chosen to capture
the information that is necessary for obstacle avoidance. However to include dynamics
constraints it is required that the motion planning now be done in the state space X.

The RRT algorithm can be extended to the kinodynamic case with relative simplicity.
In particular, a random state x is sampled from the state space X and its nearest neighbor
xnear on the current tree T is found. Instead of connecting x and xnear with a straight line
(which is likely not dynamically feasible), a random control u ∈ U and random time t are
sampled. Then, the state is propagated forward by integrating the differential equations (2)
with the chosen u for a time t and initial condition xnear. The resulting state xnew is then
added to the tree if the path from xnear to xnew is collision free. This is referred to as a
forward-propagation-based approach.

Another approach to kinodynamic planning leverage steering-based algorithms. In these
approaches, the planner selects two points in the state space x and x′ and then uses a steering
subroutine to find a feasible trajectory to connect these points. Crucially, these approaches
only work well if the steering subroutine is efficient. This approach is be particularly well
suited for differential flat systems.

(a) Reeds-Shepp car (b) Double integrator system

Figure 4: Results from a kinodynamic planner called Differential FMT* (DFMT*). The
figure on the left shows the results for a Reeds-Shepp car model, and on the right is a double
integrator model.

7.6 Deterministic Sampling-Based Motion Planning

Probabilistic sampling-based algorithms, such as the probabilistic roadmap (PRM) and the
rapidly exploring random tree (RRT) algorithms, have been quite successful in practice
for robotic motion planning and often have nice theoretical properties (e.g. in terms of

7



probabilistic completeness or even asymptotic optimality). Such algorithms are probabilistic
because they compute a path by connecting independently and identically distributed (i.i.d.)
random points in the configuration space. However, this randomization introduces several
challenges for practical use, including certification for safety-critical applications and the
ability to use offline computation to improve real-time execution. Hence, it is important to
ask whether similar (or better) theoretical guarantees and practical performance could be
obtained by considering deterministic approaches.

An important metric for answering this question is referred to as the l2-dispersion.

Definition 7.1 (l2-dispersion). For a finite set S of points contained in X ⊂ Rd, its l2-
dispersion D(S) is defined as:

D(S) := sup
x∈X

min
s∈S
‖s− x‖2. (3)

Intuitively, the l2-dispersion of S quantifies how well a space is covered by the set of
points in S in terms of the largest Euclidean ball that touches and contains none of the
points. For a fixed number of samples, a small l2-dispersion (only a small radius ball can
be fit among the points of S without touching or containing any) means that the points are
more uniformly distributed.

To create a deterministic sampling based motion planning algorithm, it is desirable to
generate a set of samples S with low-dispersion. In fact, low-dispersion sampling sequences
exist that give sets S with l2-dispersion D(S) on the order of O(n−1/d) where d is the
dimension of the space. Additionally, for d = 2 it is possible to create sequences of points
S that minimize the l2-dispersion. Then, if the set S of n samples has l2-dispersion that
satisfies

D(S) ≤ γn−1/d,

for some γ > 0, and if limn→∞ n
1/drn =∞, then the arc length of the path cn returned will

converge to the optimal path c∗ as n −→∞.
In summary, deterministic sampling can be used to generate motion planning algorithms.

These deterministic algorithms still maintain the asymptotic optimality guarantees that
probabilistic planners do, and can even use a smaller connection radius rn.

References

[KF11] Sertac Karaman and Emilio Frazzoli. Sampling-based algorithms for optimal mo-
tion planning. CoRR, abs/1105.1186, 2011.

[KSO94] Lydia Kavraki, Petr Svestka, and Mark H Overmars. Probabilistic roadmaps for
path planning in high-dimensional configuration spaces, volume 1994. Unknown
Publisher, 1994.

[LaV98] Steven M LaValle. Rapidly-exploring random trees: A new tool for path planning.
1998.

8


