
AA274A: Principles of Robot Autonomy I
Course Notes

Previous chapters addressed the problem of robotic motion planning and control by
leveraging techniques from control theory and optimal control. In particular, these techniques
were used to generate open and closed-loop control laws to accomplish specific tasks such as
trajectory generation, trajectory tracking, and stabilization or regulation about a particular
robot state. One common component among all of these algorithms was the use of a model of
the robot’s kinematics or dynamics, which mathematically defines how the robot transitions
from state to state based on control inputs.

In this chapter yet another set of algorithms for motion planning/trajectory generation
is discussed. These algorithms are particularly well suited for higher-level motion planning
tasks, such as motion planning in environments with obstacles. This is accomplished by
focusing on formulating the motion planning problem for a robot with respect to the robot’s
configuration space rather than the state space that was used in previous chapters. While
the robot’s configuration is derivable from its state (and still characterizes all of the robot’s
degrees of freedom), the definition of the configuration space can be useful because it can be
tailored to collision avoidance tasks1. Historically speaking, these approaches were developed
alongside many of the techniques from previous chapters, and are still being researched today.

6 Search-Based Motion Planning

Recall the general definition of the motion planning problem:

Definition 6.1 (Motion planning problem). Compute a sequence of actions to go from an
initial condition to a terminal condition while respecting constraints and possibly optimizing
a cost function.

Previous chapters approached this problem by formulating mathematical optimization
problems that minimized a cost function subject to constraints on the motion (i.e. from
dynamics/kinematics, control limits, or conditions on the robot’s state), or leveraged dif-
ferential flatness properties of the model. In these approaches, the robot’s trajectory was
parameterized by its state x and the corresponding control inputs u which satisfied a set of
differential equations

ẋ = f(x,u).

1In some cases the choice of configuration and state may end up being the same.

1

In this chapter, the motion planning problem will instead be addressed with respect to
a configuration space (C-space). The configuration q of a robot is derivable from the full
dynamics state x and captures all of the degrees of freedom of the robot (i.e. all rigid body
transformations). In some cases the state and configuration of the robot may be the same,
but in other cases the definition of the configuration can be tailored to simplify the motion
planning problem. One important example of this is for geometric path planning, where paths
in the configuration space can be planned without considering the robot kinematic/dynamics
model.

Example 6.1 (Motivating Example). Consider the yellow robot from Figure 1 that lives in a
2D world with obstacles and is trying to get from one point to another. Additionally, suppose
this robot has a state x = [x, y, θ, ẋ, ẏ, θ̇]T , and consider a configuration space defined by
q = [x, y, θ]T which fully captures the robot’s degrees of freedom. Since the motion planning
problem in this case involves obstacle avoidance, it might be easier to just plan a sequence
of configurations q that are collision free (as is shown in the right-side graphic of Figure 1).

In this case, the use of the configuration space has simplified the motion planning problem
by abstracting away the consideration of the robot’s dynamics. Once the geometric path has
been defined in configuration space, other techniques (such as those discussed in previous
chapters) could be used to perform lower-level control functions for path tracking.

Figure 1: Motivating example: motion planning in a 2D workspace with obstacles.

Additionally, it is important to note that the C-space is a subset of R3, and in particular
the C-space is R2 ×S1. This subspace is special because it includes the manifold S1, which
characterizes the fact that the rotational degree of freedom θ satisfies θ = θ ± 2πk for all
k = 1, 2, This distinction is important to make because it endows the planner with the
ability to move from one angle to another in two different ways (i.e. the robot can turn
left or turn right). For example, suppose the robot in Figure 1 has a current heading of
θ = 3π/2 and wants move to have a heading θg = 0 subject to the constraint of avoiding
a C-space obstacle at θ = π (see Figure 2). If the equivalence between the angles 0 and 2π
is not established in the definition of the configuration space, the robot would not be able
to traverse a collision-free path to the desired heading in the configuration space (see red

2

trajectory). Instead, since the configuration space is defined with respect to S1, the robot is
able to achieve the desired heading (see green trajectory).

Figure 2: Example trajectory planning where the rotational degree of freedom is not de-
scribed on S1 (red) and where it is described on S1 (green)

In this chapter two types of motion planning algorithms that plan in the configuration
space will be discussed. The first class consists of grid-based methods, and the second class
consists of methods referred to as combinatorial planners.

6.1 Grid-based Motion Planners

Suppose the robot’s configuration q is a d dimensional vector, then the C-space is a subset
of Rd. Critically, this is a continuous space and therefore there are an infinite number of
potential configurations the robot could be in. To simplify this problem, grid-based motion
planners use a grid to discretize the C-space into a finite number of allowable configurations.
For example, in a simple C-space in two dimensions the grid might look like that shown
in Figure 3. In grid-based planners, undesirable configurations are simply represented by
identifying some cells of the grid to be forbidden (e.g. for obstacle avoidance). The dynam-
ics/kinematics of the robot are also abstracted away and it is assumed that the robot has the
ability to move freely between adjacent cells (configurations). After this discretization, the
resulting motion planning problem is sometimes referred to as a discrete planning problem
because only a finite number of options are available at each step, and only a finite number of
configurations are possible. The planning problem then reduces to finding a way to traverse
through the cells from the initial configuration to a desired final configuration.

Mathematically, problems of this type are commonly expressed using discrete graphs. A
graph G = (V,E), is simply defined by a set of vertices V and a set of edges E. In the
context of grid-based motion planners, each vertex v ∈ V represents a free cell of the grid,
and each edge (v, u) ∈ E corresponds to a connection between adjacent cells. With the
graph representation, the planning problem is to find a way to traverse through the graph
to reach the desired vertex. Algorithms for solving such problems are referred to as graph
search methods.

3

Figure 3: Discretizing the configuration space using a grid.

The advantages of such approaches are that they are simple and easy to use, and for some
problems can be very fast. The disadvantages are primarily the result of the discretization
procedure. In some cases, if the resolution of the grid is not fine enough the search algorithm
may not always be able to find a solution. Additionally, for a fixed resolution the size of the
graph grows exponentially with respect to the dimension of the configuration space. There-
fore this approach is generally limited to simple robots with a low-dimensional configuration
space.

6.1.1 Label Correcting Algorithms

Since the graph is defined by a finite number of vertices (also referred to as nodes) and edges,
it should be theoretically possible to solve a graph search problem in finite time. However in
order to achieve this in practice, several simple “accounting” tricks need to be used to keep
track of how the search has progressed and to avoid redundant exploration. Additionally, it
is desirable to find a “best” path, and so a mechanism for keeping track of the current best
path is required during the search.

A general set of algorithms known as label correcting algorithms employ such accounting
techniques to guarantee good performance. In these algorithms, the notion of a “best” path
is logged in terms of a cost-of-arrival.

Definition 6.2 (Cost-of-Arrival). The cost-of-arrival associated with a vertex q with respect
to a starting vertex qI is the cost associated with taking the best known route from qI to q
along edges of the graph, and is denoted C(q).

Additionally, in a slight abuse of notation the cost from traversing an edge from vertex
q to vertex q′ is denoted as C(q, q′). To keep track of what nodes have already been visited
and which still need further exploration, label correcting algorithms define a set of frontier
vertices (sometimes also referred to as alive). This allows guarantees to be made that the
search algorithm will avoid redundant exploration, and will terminate in finite time. It also

4

guarantees that if a path from the initial vertex qI to the goal vertex qG exists, that it will
be found.

In general, label correcting algorithms take the following steps to find the best path from
an initial vertex qI to a desired vertex qG

2:

1. Initialize the set of frontier vertices as Q = {qI} and set C(qI) = 0. Initialize the
cost-of-arrival of all other vertices q′ as C(q′) =∞.

2. Remove a vertex from Q and explore each of its connected vertices q′. For each q′,
determine the candidate cost-of-arrival C̃(q′) associated with moving from q to q′ as
C̃(q′) = C(q) +C(q, q′). If the candidate cost-of-arrival C̃(q′) is lower than the current
cost-of-arrival C(q′) AND is lower than the current cost-of-arrival C(qG), then set
C(q′) = C̃(q′), define q as the parent of q′, and add q′ to the set Q if q′ is not qG.

3. Repeat step 2 until the set of frontier vertices Q is empty.

The bulk of the work is done is Step 2. In particular, for the selected q from Q, these
algorithms search its connected neighbors q′ to see if moving from q to q′ will lead to a lower
overall cost than previously found paths to q′. This is why the algorithms are called “label
correcting”, since they “correct” the cost-of-arrival as better paths are found throughout the
search process. Eventually, once the best path from qI to q is found, q will never again be
added to the set Q and therefore the algorithm is guaranteed to eventually terminate.

Theorem 6.3 (Label Correcting Algorithms). If a feasible path exists from qI to qG, then
the label correcting algorithm will terminate in finite time with C(qG) equal to the optimal
cost of traversal, C∗(qG).

The primary way in which label correcting algorithms differ from each other is in how
they select the next vertex q from the set of frontier nodes Q. In fact, the set Q is often
referred to as a priority queue since the algorithm might assign priority values to the order
in which vertices are selected. Different approaches for prioritizing include depth-first search,
breadth-first search, and best-first search.

Depth-First Search Depth-first search in a directed graph expands each node up to the
deepest level of the graph, until a chosen node has no more successors. Another way to
think about this in terms of the set Q is “last in/first out”, where whenever a new vertex q
is selected from Q it chooses those vertices that were most recently added.

Breadth-First Search Breadth-first search begins with the start node and explores all
of its neighboring nodes. Then for each of these nodes, it explores all their unexplored
neighbors and so on. In terms of Q, this is like storing the frontier nodes as a queue with
the first node added is the first node selected.

2In terms of robot motion planning this would be a search over paths through the discretized configuration
space. Therefore the vertices of the graph are referred to as q to better connect this abstraction with their
physical interpretation being a particular robot configuration q.

5

Figure 4: Depth-First Search

Figure 5: Breadth First Search

Best-First Search Also commonly known as Dijkstra’s algorithm, this approach greedily
selects vertices q from Q by looking at the current best cost-of-arrivals. Mathematically,

q = arg min
q∈Q

C(q).

This approach is sometimes considered an “optimistic” approach since it is essentially making
the assumption that the best current action will always correspond to the best overall plan. In
practice this approach typically provides a more efficient search procedure relative to depth-
first or breadth-first approaches because it can account for the cost of the path, however
additional improvements can be made.

6.1.2 A* Algorithm

A* is a label correcting algorithm that is a modified version of Dijkstra’s algorithm. In
Dijkstra’s algorithm the goal vertex qG is not taken into account, potentially leading to
wasted effort in cases where the greedy choice makes no progress towards the goal. This is
quantified by a quantity called the cost-to-go.

6

Definition 6.4 (Cost-to-Go). The cost-to-go associated with a vertex q with respect to a goal
vertex qG is the cost associated with taking the best known route from q to qG along edges of
the graph.

In practice, the cost-to-go is not usually known, and therefore heuristics are used to
provide approximate cost-to-go values h(q). In order for the heuristic to be useful, it must
be a positive underestimate of the true cost-to-go. An example of a heuristic h is to simply
use distance to the goal.

While Djikstra’s algorithm only prioritizes a vertex q based on its cost-of-arrival C(q), A*
prioritizes based on cost-of-arrival C(q) plus an approximate cost-to-go h(q). This provides
a better estimate of the total quality of a path than just using the cost-of-arrival alone. The
A* algorithm is defined in Algorithm 1. Note that in the case that the heuristic is chosen to

Data: qI , qG, G
Result: path
C(q) =∞, f(q) =∞, ∀q
C(qI) = 0, f(qI) = h(qI)
Q = {qI}
while Q is not empty do

q = arg minq′∈Q f(q′)

if q = qG then
return path

end
Q.remove(q)
for q′ ∈ {q′ | (q, q′) ∈ E} do

C̃(q′) = C(q) + C(q, q′)
if C̃(q′) < C(q′) then

q′.parent = q
C(q′) = C̃(q′)
f(q′) = C(q′) + h(q′)
if q′ 6∈ Q then

Q.add(q′)
end

end

end

end
return failure

Algorithm 1: A* Algorithm

be h(q) = 0 for all q then A* is the same as Djikstra’s algorithm.

7

6.2 Combinatorial Motion Planning

Combinatorial approaches to motion planning find paths through the continuous configu-
ration space without resorting to discretizations like in grid-based planners. Recall that
in grid-based planners, cells in the discretized configuration space that were undesirable
were blocked out and simply not considered in the resulting path search. However, in the
case of combinatorial planners the structure of the free portion of the configuration space is
considered in a different way.

First, the subset of the configuration space C that is free (i.e. results in no collisions) is
denoted as Cfree and is called the free space (see Figures 6 and 7).

Figure 6: Free and forbidden spaces of the configuration space for a simple circular robot
in a 2D world. Note that the forbidden space accounts for the physical dimensions of the
robot.

Figure 7: Once the free and forbidden configurations have been identified, the physical
dimensions of the robot can be ignored. This figure shows an example of a path planning
problem in C-space with obstacles.

Combinatorial motion planning approaches operate by computing roadmaps through the
free space Cfree. A roadmap is a graph G where each vertex represents a point in Cfree

8

and each edge represents a path through Cfree that connects a pair of vertices. The set S
is then defined for a particular roadmap graph G as the set of all points in Cfree that are
either vertices of G or lie on any edge of G. This graph structure is similar to that used in
grid-based planners, with the important distinction that the vertices can potentially be any
configuration q ∈ Cfree while in grid-based planners the vertices are defined ahead of time
by discretization. This distinction is very important because the flexibility of choosing the
vertices does not result in any loss of information! Once the roadmap has been defined, a
path can be defined by first connecting the initial configuration qI and goal configuration qG
to the roadmap and then solving a discrete graph search over the roadmap graph G.

In general combinatorial planners are complete (i.e. the algorithm will either find a solu-
tion or will correctly report that no solution exists), and can even be optimal in some cases.
However, often times in practice they are not computationally feasible to implement except
in problems with low-dimensional configuration spaces and/or simple geometric representa-
tions of the environment. Additionally, it requires that the free space be completely defined
in advance, which is not necessarily a realistic requirement.

6.2.1 Cell Decomposition

One common approach for deriving the roadmap is to use cell decomposition to decompose
Cfree. Cell decomposition refers to the process of partitioning Cfree into a finite set of regions
called cells, which should generally satisfy:

• Each cell should be easy to traverse and ideally convex.

• Decomposition should be easy to compute.

• Adjacencies between cells should be straightforward to determine, in order to build the
roadmap.

Example 6.2 (2D Cell Decomposition). Consider a two-dimensional configuration space as
shown in Figure 8. This space is decomposed into cells that are either lines or trapezoids by
a process called vertical cell decomposition. Once the cells have been defined, the roadmap
is generated by placing a vertex in each cell (e.g. at the centroid) as well as a vertex on each
shared edge between cells.

If the forbidden space is polygonal, cell decomposition methods work pretty well and
each cell can be made to be convex. In general, there exist several approaches for performing
cell decomposition. However, cell decomposition in higher dimensions becomes increasingly
challenging.

6.2.2 Other Roadmaps

Other ways to define roadmaps besides using cell decomposition exist. Two possible examples
are shown in Figure 9, and include a maximum clearance or minimum distance approach.
Maximum clearance roadmaps simply try to always keep as far from obstacles as possible,
for example by following the centerline of corridors. These roadmaps are also sometimes

9

Figure 8: Example of 2D Cell Decomposition with Cfree colored white. A roadmap is defined
as the graph G with vertices shown as black dots and edges connecting them. To solve a
planning problem with qI and qG these points are first connected to the roadmap, and then
the path is easily defined.

referred to as “generalized Voronoi diagrams”. Minimum distance roadmaps are generally
the exact opposite of maximum clearance roadmaps in that they tend to graze the corners
of the forbidden space. In practice this is likely not desirable and therefore these approaches
are less commonly used without modification.

Figure 9: Methods for generating roadmaps that do not involve cell decomposition.

References

[LaV06] S. M. LaValle. Planning Algorithms. Cambridge University Press, Cambridge, U.K.,
2006. Available at http://planning.cs.uiuc.edu/.

10

