
AA274A: Principles of Robot Autonomy I
Course Notes

Previously, the idea of using optimal control techniques (also referred to as trajectory
optimization) for robot motion planning and control was presented. In this chapter the
optimal control problem is revisited in more detail, including a brief discussion on the use
of both indirect and direct methods.

5 Optimal Control and Trajectory Optimization

Consider an optimal control problem (OCP) formulated as the following optimization prob-
lem:

minimize
u,x

h(x(tf), tf) +

∫ tf

t0

g(x(t),u(t), t)dt,

s.t. ẋ(t) = a(x(t),u(t), t),

x(t0) = x0,

(1)

where x ∈ Rn is the robot state, u ∈ Rm is the control input, x0 is a known robot ini-
tial condition, a(x,u, t) is a function describing the robot’s dynamics, and the functions
h(x(tf), tf) and g(x(t),u(t), t) define the cost function1. The goal is to solve the optimal
control problem (1) in order to define an optimal open-loop control law of the form

u∗(t) = f(x(t0), t).

Unfortunately, this optimization problem is particularly challenging to solve since it is
infinite-dimensional2. Methods for solving (1) can be categorized as either indirect or direct.
Both types of methods (almost always) require some form of discretization, such that the
problem can be solved numerically. However, the way in which the problem is discretized is
what makes each method unique.

1State constraints x(t) ∈ X and control constraints u(t) ∈ U are also often included in practice, but for
simplicity are not included here.

2It is referred to as infinite-dimensional because it is an optimization over functions and not just a finite
set of parameters.

1

1. Indirect methods follow a “first optimize, then discretize” approach. These methods
first derive conditions for optimality of the original infinite-dimensional problem. A
solution is then recovered by discretizing the optimality conditions.

2. Direct methods follow a “first discretize, then optimize” approach. These methods first
discretize the original problem into a finite-dimensional problem (called a nonlinear
program), which is then solved numerically to recover an optimal solution.

5.1 Indirect Methods

As previously mentioned, indirect methods solve the optimal control problem (1) by deriving
necessary optimality conditions (NOC). A numerical procedure is then used to find solutions
that satisfy these conditions of optimality, thereby “indirectly” solving the original OCP.
As a brief example, for unconstrained finite-dimensional optimization problems the classic
first-order necessary optimality condition3 is that the gradient of the function must be zero
(e.g. minimize f(x) = x2 with x ∈ R has NOC df

dx
= 0).

5.1.1 Constrained Finite-Dimensional Optimization

Before discussing techniques to derive necessary optimality conditions for the infinite-dimensional
OCP (1), it is useful to briefly examine analogous conditions in finite-dimensional optimiza-
tion. Consider the equality-constrained finite-dimensional optimization problem:

minimize
x

f(x),

s.t. hi(x) = 0, i = 1, . . . ,m
(2)

with variable x ∈ Rn.

Necessary optimality conditions for (2) are derived by first forming a function called
the Lagrangian L(x,λ), which augments the objective function with a weighted sum of the
constraint functions:

L(x,λ) = f(x) +
m∑
i=1

λihi(x), (3)

where λ ∈ Rm is a vector of Lagrange multipliers. The NOCs are then given as:

∇xL(x∗,λ∗) = 0,

∇λL(x∗,λ∗) = 0,
(4)

which are the gradients of the Lagrangian with respect to the variables x and the multipliers
λ. Note that the NOCs (4) are a set of n + m algebraic equations with n + m unknowns.
In contrast, it will be seen next that the NOCs for infinite-dimensional problems are not
algebraic, but rather differential.

3It is important to note that these conditions are called necessary because they are “necessary”, but they
may not be “sufficient”. In other words there may exist solutions that satisfy the NOCs but do not solve
the original problem.

2

5.1.2 Necessary Optimality Conditions

Analogously to the Lagrangian (3) in finite-dimensional optimization, the first step to defin-
ing the NOCs for the infinite-dimensional OCP (1) is to define a function called the Hamil-
tonian:

H(x(t),u(t),p(t), t) := g(x(t),u(t), t) + pT (t)a(x(t),u(t), t), (5)

where p(t) ∈ Rn is a multiplier referred to as a costate. The NOCs are then given by a set
of differential and algebraic equations:

ẋ∗(t) =
∂H

∂p
(x∗(t),u∗(t),p∗(t), t),

ṗ∗(t) = −∂H
∂x

(x∗(t),u∗(t),p∗(t), t),

0 =
∂H

∂u
(x∗(t),u∗(t),p∗(t), t),

(6)

which must be satisfied for all t ∈ [t0, tf]. These NOCs consist of 2n first order differential
equations and m algebraic equations. Identifying unique solutions to the 2n differential
equations requires 2n boundary conditions (actually 2n+ 1 if the final time tf is not fixed).
The initial condition x∗(t0) = x0 specifies n of these conditions, and the remaining conditions
are given by (∂h

∂x
(x∗(tf), tf)− p∗(tf))

)T
δxf

+
(
H(x∗(tf),u

∗(tf),p
∗(tf), tf) +

∂h

∂t
(x∗(tf), tf)

)
δtf = 0,

(7)

where δxf and δtf are referred to as variations. If either the final time or final state is
fixed in the optimal control problem the corresponding variation is forced to be zero, which
changes the boundary conditions (7). The resulting boundary conditions for the four possible
scenarios are now summarized:

Fixed Final Time and Fixed Final State: If both tf and x(tf) are fixed, both variations
δtf and δxf are set to zero. In this case the boundary conditions (7) are trivially satisfied,
and the remaining boundary conditions on the NOCs (6) are given by:

x∗(t0) = x0,

x∗(tf) = xf .

Fixed Final Time and Free Final State: If only tf is fixed, then only the variation
δtf = 0. In this case the conditions (7) simplify and the boundary conditions for the NOCs
(6) are given by:

x∗(t0) = x0,

∂h

∂x
(x∗(tf), tf)− p∗(tf) = 0.

3

Free Final Time and Fixed Final State: If only xf is fixed, then only the variation
δxf = 0. In this case the conditions (7) simplify and the boundary conditions for the NOCs
(6) are given by:

x∗(t0) = x0,

x∗(tf) = xf ,

H(x∗(tf),u
∗(tf),p

∗(tf), tf) +
∂h

∂t
(x∗(tf), tf) = 0.

Note that in this case since the final time is free an additional boundary condition is added,
so there are now 2n+ 1 total conditions.

Free Final Time and Free Final State: If neither tf or x(tf) is fixed, then the boundary
conditions for the NOCs (6) are given by:

x∗(t0) = x0,

∂h

∂x
(x∗(tf), tf)− p∗(tf) = 0,

H(x∗(tf),u
∗(tf),p

∗(tf), tf) +
∂h

∂t
(x∗(tf), tf) = 0.

Again, since the final time is free an additional boundary condition is added such that there
are 2n + 1 total. Note that last two conditions are both extracted from (7) because the
variations δxf and δtf are independent.

5.1.3 Two-Point Boundary Value Problems

Finding solutions that satisfy the necessary optimality conditions (6) for the optimal control
problem is challenging. In particular, any solution must satisfy a set of 2n differential
equations with boundary conditions specified at both t0 and tf . The problem of finding
solutions to differential equations with boundary conditions specified at two points is called
a two-point boundary value problem. Luckily, numerical procedures have been developed for
solving these types of problems. For example the scikits.bvp solver package in Python
or the function bvp4c in Matlab implement schemes for solving these problems.

Most solvers for two-point boundary value problems typically assume the NOCs (6) and
their boundary conditions are expressed in the standard form:

ż = g(z, t), l(z(t0), z(tf)) = 0. (8)

However, some types of problems may not directly fit into this standard form. For such
instances, it is sometimes possible to convert a non-standard form problem into the standard
form (8) [AR81].

In optimal control settings one common case where the two-point boundary value problem
cannot directly be expressed in standard form is free final time problems, where tf needs to

4

be determined but does not have any associated dynamics. A useful trick in this case is to
define a new variable τ = t

tf
∈ [0, 1] to replace the time variable t (since before tf wasn’t

known but now τf = 1 is known). With this new variable the following changes can be made:

1. Replace all derivatives with respect to t with derivatives with respect to τ , using
d(·)
dτ

= tf
d(·)
dt

(chain rule).

2. Introduce a “dummy” state r that corresponds to tf with dynamics ṙ = 0.

3. Replace tf with r in all NOCs and in all boundary conditions.

The “dummy” state r can then be included in the vector z and the NOCs expressed in the
standard form (8). In summary, this approach can be thought of as “tricking” the standard-
form solver to think that the final time is 1 and that tf is actually a state with dynamics
(although the dynamics are ṫf = 0).

Example 5.1 (Free Final Time OCP). Consider a double integrator system

ẍ = u,

where x ∈ R is the state and u ∈ R is the control input where the control task is to find a
trajectory that minimizes the cost function

J =
1

2
αt2f +

∫ tf

0

1

2
βu2(t)dt,

and satisfies the boundary conditions

x(0) = 10, ẋ(0) = 0, x(tf) = 0, ẋ(tf) = 0.

This problem is a free final time problem with a fixed final state, and the cost is formulated
to find a trajectory that minimizes a combination of the time to reach the final state and the
amount of control effort required to get there. A trade-off between minimizing final time and
minimizing control effort is made by adjusting the weighting parameters4 α and β. From
the cost function it is apparent that:

h(x(tf), tf) =
1

2
αt2f , g(x(t),u(t), t) =

1

2
βu2(t),

and the dynamics equation can be equivalently expressed as a first-order system of ODEs
by setting x1 = x and x2 = ẋ:

ẋ1 = x2,

ẋ2 = u,

4What does intuition suggest the optimal behavior would be for α = 0 or for β = 0?

5

such that x = [x1, x2]
T and the boundary conditions become:

x1(0) = 10, x2(0) = 0, x1(tf) = 0, x2(tf) = 0.

Now that the problem has been introduced, the first step is to derive the Hamiltonian:

H =
1

2
βu2 + p1x2 + p2u,

where p1 and p2 are the costates. Next, the NOCs (6) can be derived by taking the partial
derivatives of H with respect to p, x, and u:

ẋ∗1 = x∗2,

ẋ∗2 = u∗,

ṗ∗1 = 0,

ṗ∗2 = −p∗1,
0 = βu∗ + p∗2.

The next step is then to determine appropriate boundary conditions for the NOCs. As
mentioned before, this problem is a free final time and fixed final state problem. Therefore
the boundary conditions are given by

x∗1(0) = 10,

x∗2(0) = 0,

x∗1(tf) = 0,

x∗2(tf) = 0,

1

2
βu∗(tf)

2 + p∗1(tf)x
∗
2(tf) + p∗2(tf)u

∗(tf) + αtf = 0.

Now, from the last NOC it can be seen that the optimal control u∗ can be solved for in
terms of the costate p∗2:

u∗ = − 1

β
p∗2.

This expression can then be substituted into the second NOC and into the boundary condi-
tions. At this point the resulting two-point boundary value problem can be expressed in the
standard form (8) (by using the free final time trick previously discussed), and solved nu-
merically. However, it also turns out that this problem is simple enough to solve analytically
as well.

Analytical Solution: Integrating the differential equations for the costates p1 and p2
gives:

p∗1 = C1,

p∗2 = −C1t+ C2,

6

where C1 and C2 are constants. Therefore, the optimal control u∗ can be expressed as
u∗ = C1

β
t− C2

β
and the states x1 and x2 can be integrated to yield:

x∗2 =
C1

2β
t2 − C2

β
t+ C3,

x∗1 =
C1

6β
t3 − C2

2β
t2 + C3t+ C4,

where C3 and C4 are additional constants. There are now five unknown quantities, C1, C2,
C3, C4, and tf , which can be determined by leveraging the five boundary conditions. In
particular from the condition x∗1(0) = 10 and x∗2(0) = 0 it is easy to see that C3 = 0 and
C4 = 10. The remaining boundary conditions can then be used to analytically solve for the
remaining constants, and in particular:

tf = (1800
β

α
)1/5.

For a couple of interesting insights, it can be noted that as β −→ 0 the cost function
penalizes the final time more, and from the expression for tf we can see that tf −→ 0.
Additionally, as α −→ 0 the cost function penalizes control inputs, and correspondingly it can
be seen in the expression for tf that tf −→ ∞. Further, note that the optimal control takes
the form

u∗(t) =
C1

β
t− C2

β
.

Thus the control input is linear in time and its magnitude is inversely proportional to β.

5.2 Direct Methods

Unlike indirect methods, direct methods do not require a derivation of the necessary op-
timality conditions. Instead these methods directly discretize the original optimal control
problem (1) to turn it into a finite-dimensional constrained optimization problem called a
nonlinear programming problem.

While several approaches for discretizing the OCP exist, one simple approach is to just use
a forward Euler time discretization. Recall that the forward Euler time discretization method
(the simplest of the Runge-Kutta methods) can be used to numerically solve differential
equations. In particular, with the choice of a time step hi the differential equations ẋ =
a(x,u, t) are discretized as:

xi+1 = xi + hia(xi,ui, ti), (9)

where xi = x(ti), ui = u(ti), and ti+1− ti = hi. With this recursive expression (9), an initial
condition x(t0), and a sequence of inputs u(ti) for i ≥ 0, the states x(ti) can be computed
easily. Suppose the optimal control problem (1) was defined over the time interval [t0, tf].
Applying a forward Euler time discretization essentially partitions this interval into a finite
set of N times {t0, t1, . . . , tN} where tN = tf and the time step between each is hi = ti+1− ti.

7

Then the parameters of the optimization problem will simply become the state and controls
at these times, xi = x(ti) and ui = u(ti) for i = 0, . . . , N .

Rewriting the original OCP (1) as a function of the discrete set of parameters ti, xi, and
ui will require modifications to both the constraints and to the cost function. First, the
recursive formula (9) is used to replace the dynamics constraint ẋ = a(x,u, t) in the OCP5.
Updating the cost function is going to require a numerical approximation of the integral,
such as by using one of the Newton-Cotes formulas. The simplest of which would yield the
approximation: ∫ tf

t0

g(x(t),u(t), t)dt ≈
N−1∑
i=0

hig(xi,ui, ti).

The OCP (1) can now be expressed completely as the finite-dimensional nonlinear program
(NLP):

minimize
ui,xi

h(xN , tN) +
N−1∑
i=0

hig(xi,ui, ti),

s.t. xi+1 = xi + hia(xi,ui, ti), i = 0, . . . , N − 1,

x0 = x(t0).

(10)

5.3 Consistency of Time Discretization

The finite-dimensional problem (10) is only an approximation of the original problem (1),
so it is important to justify that this approximation method is consistent with the original
problem. This is accomplished by taking a look at the necessary optimality conditions for
the NLP (10) and comparing them to the necessary optimality conditions for the original
OCP (1).

Recall that the necessary conditions of optimality for equality-constrained finite-dimensional
optimization problems have previously been discussed in Section 5.1.1. In particular, the
Lagrangian is first formulated, which for (10) takes the form:

L = h(xN , tN) +
N−1∑
i=0

hig(xi,ui, ti) +
N−1∑
i=0

λTi (xi + hia(xi,ui, ti)− xi+1).

Note that even though the initial condition constraint is included in (10) it can be ignored in
the Lagrangian by simply assuming x0 is not actually a decision variable in the optimization

5The original dynamics model ẋ = a(x,u, t) is sometimes called the continuous time model and the
recursive formula xi+1 = xi + ha(xi,ui, ti) is called the discrete time model.

8

problem (since it is fixed). The NOCs are then given by:

∇xi
L = hi

∂g

∂x
(xi,ui) + hi

(∂a
∂x

(xi,ui)
)T
λi + (λi − λi−1) = 0, i = 1, . . . , N − 1

∇xN
L =

∂h

∂x
(xN)− λN−1 = 0,

∇ui
L = hi

∂g

∂u
(xi,ui) + hi

(∂a
∂u

(xi,ui)
)T
λi = 0, i = 0, . . . , N − 1

xi + hia(xi,ui, ti)− xi+1 = 0, i = 0, . . . , N − 1

(11)

Now, from the indirect method with equations (5), (6), and boundary conditions (7)
with fixed final time and free final state, the NOCs for the infinite-dimensional OCP can be
written as:

∂g

∂x
(x(t),u(t)) +

(∂a
∂x

(x(t),u(t))
)T
p(t)− ṗ(t) = 0, t ∈ [t0, tf]

∂h

∂x
(x(tf))− p(tf) = 0,

∂g

∂u
(x(t),u(t)) +

(∂a
∂u

(x(t),u(t))
)T
p(t) = 0, t ∈ [t0, tf]

ẋ(t)− a(x(t),u(t), t) = 0, t ∈ [t0, tf]

x0 − x(t0) = 0.

(12)

The NOCs (11) for the discretized problem and the NOCs for the original OCP (12) are
remarkably similar. In fact, the NOCs (11) can be seen as themselves simply the discretized
versions of (12). To see this, simply perform a forward Euler discretization of the equations
in (12) with:

ṗ(t) =
λi − λi−1

hi
, p(ti) = λi, i = 0, . . . , N − 1,

ẋ(t) =
xi+1 − xi

hi
, x(ti) = xi, u(ti) = ui, i = 0, . . . , N − 1.

Therefore, as the time step hi −→ 0 the NOCs for the discretized (direct method) problem
converge to the NOCs derived directly for the original infinite-dimensional OCP (indirect
method)!

References

[AR81] Uri Ascher and Robert D Russell. Reformulation of boundary value problems into
“standard” form. SIAM review, 23(2):238–254, 1981.

[BV04] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge univer-
sity press, 2004.

[Kir04] Donald E. Kirk. Optimal Control Theory: An Introduction (Dover Books on Elec-
trical Engineering). Dover Publications, 2004.

9

