
AA274A: Principles of Robot Autonomy I
Course Notes

The previous chapter introduced the concepts of open-loop and closed-loop control laws,
and then dove into techniques for designing open-loop control laws for robots based on
optimal control and differential flatness. These techniques are useful for determining control
inputs that accomplish different objectives, such as “move from point A to point B in a
minimal amount of time while satisfying some constraints”. Additionally, computing open-
loop control laws is often computationally less challenging that computing closed-loop control
laws. However in practice open-loop control is not very robust since observations are not
leveraged to update the control input. One solution to this robustness problem is to convert
the open-loop control law into a closed-loop control law, typically referred to as trajectory
tracking controllers. Another solution is to not use any open-loop techniques but rather to
directly synthesize a closed-loop control law, for example by performing a Lyapunov stability
analysis. This chapter will introduce techniques for synthesizing closed-loop controllers in
both of these ways.

4 Closed-loop Motion Control

Recall from the previous chapter that open-loop control laws are defined as a function of
time for a given initial condition. In contrast, closed-loop control laws are a function of the
current state, and therefore are reactive.

Definition 4.1 (Closed-loop Control). If the control law is a function of the state and time,
i.e.,

u(t) = π(x(t), t) (1)

then the control is said to be in closed-loop form.

Closed-loop controllers (also sometimes referred to as feedback controllers or policies), are
much more robust than open-loop controllers. For example, suppose a controller needs to be
designed to make a wheeled robot move from point to point. If the model used for open-loop
controller design wasn’t perfect, if the initial state was not perfectly known, or if external
disturbances affected the system (e.g. wheel slipping), then the robot would not exactly reach
its desired destination. Alternatively, a closed-loop control law can continuously correct for
these errors since it is always taking in new information.
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4.1 Trajectory Tracking

One common approach to closed-loop control is to simply extend the open-loop control
techniques from the previous chapter to include a feedback component. Such an approach
consists of two steps:

1. Use open-loop control techniques to design a desired trajectory xd(t) and corresponding
control ud(t).

2. Design a closed-loop control law that is designed to make sure the system stays close
to the desired trajectory.

These controllers are referred to as trajectory tracking controllers, and their control law is
defined as

u(t) = ud(t) + π(x(t) − xd(t), t). (2)

This type of control law is also said to be a “feedforward plus feedback” controller. This is
because the term ud(t) is an open-loop “feedforward” term that attempts to generally make
the system follow the desired trajectory, while the term π(x(t) − xd(t), t) is a “feedback”
term that attempts to correct for any errors.

The previous chapter discussed techniques for solving open-loop control problems to
define the desired trajectory, and additionally there are several approaches for designing the
feedback component π(x(t) − xd(t), t):

• Geometric approaches generally leverage some sort of insight about the system and are
therefore hard to discuss in general settings. They are also typically difficult to derive
theoretical guarantees for.

• Linearization based approaches typically linearize nonlinear dynamics models about
points along the desired trajectory. These linearized models are then used to design
linear controllers (e.g. linear quadratic regulators). For some nonlinear systems, in-
stead of linearizing about specific points it possible to feedback linearize the system.
This essentially means that the non-linearities can be exactly “canceled” out such that
the system can be considered linear. Linear control theory can then be applied to
design a feedback control scheme.

• Non-linear control techniques also exist which do not rely on linearization. These
approaches are also heavily system dependent, but one common tool for non-linear
control is based on Lyapunov theory.

• Optimization-based feedback control laws can also be designed. These approaches often
leverage optimal control theory, some of which was presented in the previous chapter.
One common optimization-based approach for closed-loop control is known as model
predictive control (MPC).
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4.1.1 Trajectory Tracking for Differentially Flat Systems

For differentially flat systems linearization based approaches to designing trajectory tracking
controllers are particularly useful. In fact, every flat system can be linearized via dynamic
feedback and a coordinate change [RPK13, Lev09] to yield a dynamical system of the form

z(q+1) = w, (3)

where z(q+1) is the q + 1-th order derivative of the flat outputs z and q is the degree of the
flat output space (i.e. the highest order of derivatives of the flat output that are needed to
describe system dynamics), and w is a modified “virtual” input term.

The set of ODEs (3) are linear, which means that techniques from linear control theory
can be applied to design a control law for w. In particular, for trajectory tracking problems
suppose a reference flat output trajectory zd(t) has been defined which corresponds to the
virtual input wd(t). Let the error between the actual flat output and desired flat output be
defined as e(t) = z(t) − zd(t) and consider a closed-loop control law of the form

wi(t) = wi,d(t) −
q∑

j=0

ki,je
(j)
i (t), (4)

where (·)i denotes the i-th component of the vector, e(j) = z(j) − z
(j)
d is the j-th order

derivative of the error, and ki,j are called controller gains. The application of this control
law to the system (3) will result in closed-loop dynamics of the form

z(q+1) = wd −
q∑

j=0

Kje
(j),

where Kj is a diagonal matrix with i-th diagonal element ki,j. Since z
(q+1)
d = wd(t) this can

be simplified to give the closed-loop error dynamics:

e(q+1) +

q∑
j=0

Kje
(j) = 0. (5)

This set of linear ODEs describes the dynamics of the error, and many classical techniques
from linear control theory can be used to choose the gains ki,j that will guarantee this system
is stable. Having stable error dynamics means that the error will decay to zero, which in this
case means the system will track the desired trajectory.

Example: Consider the dynamically extended unicycle model

ẋ(t) = v cos(θ(t)),

ẏ(t) = v sin(θ(t)),

v̇(t) = a(t),

θ̇(t) = ω(t),

(6)
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where the two inputs are the acceleration a(t) and the rotation rate ω(t). This system is
differentially flat with flat outputs x and y and order q = 1. It can therefore be expressed
as:

z̈ =

[
ẍ
ÿ

]
=

[
cos(θ) −V sin(θ)
sin(θ) V cos(θ)

]
︸ ︷︷ ︸

:=J

[
a
ω

]
:=

[
w1

w2

]
,

and a trajectory tracking controller can be defined as

w1 = ẍd − kpx(x− xd) − kdx(ẋ− ẋd),

w2 = ÿd − kpy(y − yd) − kdy(ẏ − ẏd),

where (·)d represents a term associated with the desired trajectory. The control inputs a(t)
and ω(t) can then be computed by solving the linear system

J

[
a
ω

]
=

[
w1

w2

]
,

assuming that J is full rank.

4.2 Closed-loop Control

Trajectory tracking is just one example of closed-loop control, which assumes the existence
of a desired trajectory for which to track. As previously discussed, one way of computing
the desired trajectory is by solving an open-loop optimal control problem. However, in the
context of optimal control, modifying an open-loop optimal control with feedback is not
always the most desirable option. Instead, it may be preferred to just directly solve a closed-
loop optimal control problem to obtain an optimal policy u∗ = π(x(t), t). Techniques for
solving closed-loop optimal control problems typically are based on either the Hamilton-
Jacobi-Bellman equation or dynamic programming.

Another common closed-loop control problem is to drive to or stabilize the system about
a particular state (often called regulation). For systems with linear dynamics models the
most controller for regulation problems is called the linear quadratic regulator. However,
for nonlinear systems, stabilizing closed-loop controllers are commonly designed through
Lyapunov analysis.

4.2.1 Lyapunov-based Control

A Lyapunov stability analysis [SL91, RV13] is a common tool for analyzing the stability of
nonlinear systems. This analysis is based on the definition of a Lyapunov function, which
can be thought of as a measure of the “energy” of the system. Similar to mechanical systems,
if the energy does not increase in time then the system is considered stable1.

The most challenging part of a Lyapunov stability analysis is finding a suitable Lyapunov
function, and for many complex systems this may be extremely difficult. However, one of

1Note there are more technical definitions of stability, but for simplicity these will not be discussed here

4



the advantages of the method is that it provides nice theoretical guarantees regarding the
stability of the system, and is applicable to any system of interest.

Example 4.1 (Pose Stabilization). Consider a robot that is modeled by the unicycle robot
model (differential drive robot model) represented graphically in Figure 1

ẋ(t) = v(t) cos θ(t),

ẏ(t) = v(t) sin θ(t),

θ̇(t) = ω(t),

(7)

where the control inputs are the robot speed v and the rotational rate ω. The objective is to
design a closed-loop controller that will drive the robot the origin (i.e. x = 0, y = 0, θ = 0).

Figure 1: Pose stabilization problem in Cartesian coordinates

To make the controller design easier the dynamics will be alternatively expressed in polar
coordinates. This can be accomplished by defining

ρ =
√
x2 + y2,

α = atan2(y, x) − θ + π,

δ = α + θ,

(8)

where ρ is the Euclidean distance to the origin, α is the heading angle with respect to the
line from the robot to the origin, and δ is the angle between the x-axis and the line from the
robot to the origin. These coordinates are graphically shown in Figure 2. Using the newly
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Figure 2: Pose stabilization problem in polar coordinates

defined polar coordinates, the dynamics equations (7) can be equivalently expressed as

ρ̇(t) = −v(t) cosα(t),

α̇(t) =
v(t) sinα(t)

ρ(t)
− ω(t),

δ̇(t) =
v(t) sinα(t)

ρ(t)
.

(9)

By expressing the dynamics in polar form, a Lyapunov stability analysis can now be
easily performed. Consider the following candidate Lyapunov function:

V (ρ, α, θ) =
1

2
ρ2 +

1

2
(α2 + k3δ

2), (10)

and consider the following closed-loop control law:

v = k1ρ cosα,

ω = k2α + k1
sinα cosα

α
(α + k3δ),

(11)

where k1, k2, k3 > 0.
The candidate Lyapunov function is quadratic and therefore is positive everywhere, V ≥

0, and is equal to zero only at the origin with ρ = 0, α = 0, δ = 0. Therefore, if it is possible
to show that along all closed-loop system trajectories the Lyapunov function is decreasing
(V̇ < 0), then it can be guaranteed that the system will converge to the origin! To show
that the Lyapunov function decreases along trajectories of the system, begin by taking the
derivative of V :

V̇ = ρρ̇+ αα̇ + k3δδ̇.
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This quantity can now be shown to decrease along all closed-loop trajectories by substituting
in the dynamics equations (8) with the closed-loop control law as defined by (11):

V̇ = ρρ̇+ αα̇ + k3δδ̇,

= −ρv cosα + α
(v sinα

ρ
− ω

)
+
k3δv sinα

ρ
,

= −k1ρ2 cos2 α− k2α
2,

where in the last line the control laws were substituted in for v and ω and algebraically
simplified. Note that since k1 and k2 have been chosen to be strictly positive, this function
must be strictly negative for all values of ρ and α! Therefore this Lyapunov stability analysis
has theoretically proven that the system under the closed-loop control law (11) will converge
to the origin.
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