AA274A: Principles of Robot Autonomy I
Course Notes

Chapter 1 introduced techniques for developing mathematical models to describe robot
motion by analyzing its kinematics and dynamics. These models are typically expressed in
the form of differential equations that are functions of a set of generalized coordinates/ve-
locities and inputs to the system. The next step is to discover how these models can be
leveraged for robot motion planning and control. In particular this chapter and the next will
focus on robot control, where the goal is to determine what inputs to apply to the system
to achieve desirable behavior. To address the robot control problem a control law must be
developed, which is a set of rules or a mathematical function that determines what inputs
should be applied to the system at any given time.

The ecosystem of techniques for robot control is vast, and control laws can generally
be categorized in several ways. One of the most fundamental classifications for a control
law is if it is open-loop or closed-loop. Open-loop control laws do not rely on observations
to influence the choice of control input, while closed-loop control laws do. As a practical
example, suppose you are standing in a room and wanted to walk to the other side and sit in
a chair. For open-loop control you might look at where the chair is relative to your current
position, think about how to walk there, and then with your eyes closed walk to the chair
and sit. Alternatively, for closed-loop control you might keep your eyes open the whole time.

In practice, open-loop control laws suffer from robustness issues since they do not make
corrections based on real-time observations. However, open-loop control is still an extremely
important topic within the context of robotics. In particular, suppose you are interested not
just in getting your robot from one point to another, but doing so in the best or optimal
way. This problem, known as trajectory optimization or optimal control', can be solved to
obtain an optimal trajectory for the robot along with the corresponding sequence of control
inputs. In theory, applying this optimal control sequence as an open-loop control law would
then make the robot follow the optimal trajectory.

This chapter will discuss several common techniques related to optimal control and tra-
jectory optimization, including a brief review on dynamic/kinematic models, the formulation
of the optimal control problem, approaches for solving optimal control problems, and some
other topics useful in the context of robotics. The next chapter will then focus on the devel-
opment of closed-loop control laws, including approaches that leverage the open-loop optimal
control techniques discussed here.

'The terms trajectory optimization and optimal control will often be used interchangeably.

3 Open-Loop Motion Control

This chapter and the next will focus on two of the most fundamental classifications for a
control law, namely whether it is open-loop or closed-loop. In particular, this chapter will
focus on open-loop control laws that arise from the study of optimal control and trajectory
optimization problems. In general, open-loop control laws depend only on time and initial
condition of the system.

Definition 3.1 (Open-loop control). If the control law is determined as a function of time
for a specified initial state value, i.e.,

U’(t) = f(w(t0)7t)> (1)

then it is said to be in open-loop form.

3.1 Kinematic and Dynamic Models

Chapter 1 discussed techniques for deriving kinematic and dynamic models of a robot in
the form of ordinary differential equations (ODE). Such models are extremely useful in the
context of robot motion planning and control, and are essential in the context of optimal
control. For the remainder of this chapter it will be assumed that such a model has already
been identified and is expressed in the form

(t) = a(z(t), u(t),t), (2)

where £ € R"™ may be comprised of generalized coordinates ¢ and velocities f and will
be referred to as the robot’s state, w € R™ is the control input, and the function a :
R™ x R™ x R — R™ defines the model. While the set of ODEs (2) may have been derived by
considering kinematics, dynamics, or a combination of the two, this model will be generally
referred to as the robot’s dynamics model.

For clarity, note that (2) is a compact expression written in vector form for the system
of n first-order differential equations

21(t) = ar(x1(t), xo(t), ..., xn(t), ur(t), uz(t), . .., un(t),t)
To(t) = ag(x1(t), xo(t), ..., xn(t), ur(t), us(t), . .., un(t),t)

Tn(t) = ar(x1(t), xa(t), . . ., n(t), ur(t), uz(t), . .., um(t),),

where z; is the i-th component of the vector & and u; is the j-th component of the vector u.

Solutions to the set of differential equations (2) are trajectories of the system. Given an
initial condition () and a control function w(t) defined for ¢ > t(, any technique for solving
ODEs can be applied to compute the state trajectory x(t) for ¢t > to. Common numerical
integration approaches for solving the ODE system include the Runge-Kutta schemes, of
which the most common are the forward or backward Euler schemes. The forward Euler

scheme approximates () = % with h; = t;11 — t; and evaluates a at time ¢;. This
leads to the recursive update

i1 = a:i—l—hia(wi,ui,ti), 1= 0,1,... (3)

where u; = u(t;) and x; = x(t;).

3.2 Optimal Control Problem

Perhaps the most common open-loop control laws used for motion planning and control
in robotics are synthesized by formulating and solving optimal control problems. These
problems are designed to answer the question: from the current state of the robot, x(to),
what future control inputs w(¢) would make the robot follow an optimal future trajectory?
In general, generating optimal open-loop control laws require three major components:

1. A model (2) that describes the robot’s motion as a function of the input, developed by
analyzing the robot’s kinematics/dynamics.

2. A metric that defines the quality of a particular trajectory, known as a cost function
or a reward function.

3. An algorithm for searching the space of possible control inputs to find one that corre-
sponds to an optimal trajectory.

3.2.1 Problem Formulation

In this chapter the performance metric that defines the quality of a particular trajectory
will be referred to as the cost function. The standard form for defining the cost function in
optimal control problems is

ty
J(@ (), ult). 1) = hia(t;), t;) + / gla(t). ult), t)dt. (4)
0

where h(x(ts),ts) is referred to as a terminal cost and where the integral can be viewed as
a sum of stage costs induced along the path from times ¢y to t¢. In robotics, the function
J might quantify objectives such as “get from point A to point B as quickly as possible” or
“get from point A to point B while using as little effort as possible”.

Constraints can also be considered in the optimal control problem. In the field of robotics
it is common to consider constraints on the state and control that are expressed compactly
as

x(t)e X, wu(t)elU, (5)

where X is the set of all admissible states and U is the set of all admissible control inputs. A
common way to define the sets X and i/ is by a set of inequalities on x and u, respectively. For
example, let’s assume the first element of @ is constrained by x; > 0, then X = {x | z; > 0}
such that any vector & with x; > 0 belongs to the set X (and is therefore admissible).

3

Constraints are commonly used in the context of robotics to account for actuator limits (e.g.
how fast the wheels can turn, how much torque a motor can produce), or constraints on the
trajectory itself (e.g. avoid collisions with surrounding objects).

The optimal control problem is then expressed as an optimization problem over the state
trajectory @(t) and control inputs w(t) with the goal of minimizing the cost function (4)
while also satisfying the constraints (5).

Definition 3.2 (Optimal Control Problem). An optimal control problem seeks an admis-
sible control w(t) which causes the system (2) to follow an admissible trajectory x(t) that
minimizes a performance metric J(x(t),u(t),t). This problem can be expressed as an opti-
maization problem:

mz%zgmze h(x(ty),tyr) +/ g(x (t),t)dt,
s.t. x(t) = a(x(t), u(t),t), (6)
x(t) € X, wu(t) €U,
w(t0> = Xy,

where by is the initial time, t5 is either a fized final time or an optimization variable, and x
15 a known initial condition.

The solution to the optimal control problem (6) is an admissible and optimal trajectory
defined over the interval ¢ € [to, ts], and is denoted by uw*(¢) and x*(¢).

3.2.2 Solving the Optimal Control Problem

Once the optimal control problem (6) has been formulated, the next step is to find a solution.
However, this can be challenging since (6) is an infinite-dimensional optimization problem
(because the optimization is over an infinite-dimensional function and not a finite set of
parameters). Unless an analytical solution to the problem can be found, this problem must
be transformed into a finite dimensional problem so that it can be solved numerically on a
computer. In general, algorithms for numerically solving optimal control problems can be
classified as either direct or indirect methods.

Direct Methods: Direct methods follow a “first discretize, then optimize” approach. In
the first step the problem (6) is converted into a finite-dimensional problem by discretizing
the functions x(t) and w(t). For example this might be accomplished by defining the new
optimization variables to be x(t;) and u(t;) for a finite number of time points ¢;. This finite-
dimensional optimization problem is generally referred to as a nonlinear program (NLP),
which can be solved with existing numerical algorithms. Several solvers for solving gen-
eral NLPs include IPOPT and SNOPT, and software packages for solving optimal control
problems using the direct method include DIDO, PROPT, and GPOPS.

Indirect Methods: Indirect methods follow a “first optimize, then discretize” approach.
These methods first derive the necessary conditions of optimality, which are expressed as a
two-point boundary value problem. This two-point boundary value problem is essentially a
set of ODEs with boundary conditions at two points? that must be numerically solved.

Indirect methods are less commonly used in robotics because the derivation of the nec-
essary conditions of optimality must be done on a case by case basis, and can become quite
challenging. They become particularly difficult to use when constraints are imposed in the
problem. In contrast, direct methods offer much more flexibility and have been quite suc-
cessful in practice.

3.3 Differential Flatness

Solving optimal control problems to compute optimal trajectories and optimal control inputs
for a system can sometimes be computationally challenging. In fact, sometimes it is more
desirable to have a computationally efficient way of generating “good” trajectories, rather
than a challenging way of generating “optimal” ones.

For a special class of models, which are referred to as differentially flat, computing “good”
trajectories without having to formulate optimal control problems is quite easy. There are
several models that are common in robotics that are differentially flat, including a simple
car model and quadrotor models.

Example 3.1 (Simple Car Model). Consider the car model corresponding to Figure 1:

T =vcosb,
Y =vsind, (7)
0 = %tangb,

where (z,y) is the position and 6 is the orientation of the vehicle, v is the speed, ¢ is the
steering angle, and L is the length of the wheelbase. The state @ is therefore defined as
x = [z, y,)7 and the control is defined as u = [v, ¢].

Suppose the motion planning task is to find a control sequence u(t) that will take the
car from an initial state xy to a final desired state ;. One option would be to formulate
an optimal control problem with constraints x(¢y) = x¢ and x(t;) = xy. However, it turns
out that for this model there is a simpler approach. In fact, for this model it is sufficient
to specify a differentiable trajectory for z(¢) and y(t), and the remaining state variables and
control inputs can be analytically determined!

To see why this is, consider a differentiable trajectory for for z(¢) and y(t) with derivatives
#(t) and ¢(t). From the dynamics model (7) it can be seen that the first two equations can
be leveraged to compute 6(t):

0 = tan ' (y/2).

2This is in contrast to initial value problems, which have a single boundary condition and can easily be
numerical integrated to find a solution.

Furthermore, once 6(t) has been computed the speed is defined:
v=ua/cosf, or v=yg/sinb.
Finally, given 0(t) and v(t) it is possible to directly solve for the steering angle:

Ly L
¢ = tan 1(7>

This property, that from the specification of a few variables and their derivatives the
remaining state and control values are defined, is known as differential flatness.

Figure 1: Simple model for an automobile.

Definition 3.3 (Differential Flatness). A non-linear system

o(t) = a(z(t), u(t)), (8)
is differentially flat with flat output z if there exists a function o such that
z=alz,u,a,...u"), (9)

and such that the solutions to the system x(t) and u(t) can be written as functions of the
flat output z and a finite number of its derivatives:

x=p(z%...,29)

10
u=n1(zz%,...,29). (10

For a differentially flat system, all of the feasible trajectories for the system can be written
as functions of a flat output z(t) and its time derivatives. Additionally, note that the number
of flat outputs is always equal to the number of system inputs. In the context of motion
planning and control this is extremely useful for trajectory design because the flat outputs
can be specified and then directly mapped to the corresponding control inputs.

3.3.1 Trajectory Design for Differentially Flat Systems

As previously mentioned, trajectory design for differentially flat systems only requires spec-
ification of the trajectories of the flat outputs, which greatly simplifies motion planning and
control.

Consider a nonlinear system model of the form (8) that is differentially flat with flat
output z where the objective is to design a trajectory from x, to &, over a horizon of T
seconds. First, find the boundary conditions for the flat output z(0) and z(T") that satisfy
the boundary conditions on by noting that

wozﬁ(z(o)aza))? q)<0))7
xp = fB(2 9(T)).

Second, compute any smooth trajectory for the flat outputs z(¢) that satisfy these boundary
conditions. Third, use (10) to map the flat output trajectory z(t) to the state and control
trajectories x(t) and w(t).

Since the flat outputs can be specified as any smooth trajectory, a common choice is to
parameterize them using N smooth basis functions:

(11)

I\

~
:_/
D
~
\.\/

t)=>_olwi(h) (12)

where z; is the j-th element of z, &m € R are variables that parameterize the trajectory
and 1;(t) are the smooth basis functlons. One potential choice is to use polynomial basis
functions 1 (t) = 1, o(t) = t, ¥3(t) = 2, and so on. Another advantage of choosing this
parameterization of z;(t) is that it is linear in the variables ozlm. This makes it easy to map
specifications on z into values for «; that define the trajectory. Consider differentiating (12)

g times:

)=o)

(13)
N .

500 =3 o)
=1

Now, from the initial and final conditions z;(0), ;(0), .. ., zj(q)(O) and z;(T'), ;(T), ..., z](.q) (T)
[j]

the coefficients o' can be computed by solving the following linear system (assuming the

matrix is full rank):

CU(0) a0) o n(0) C2,(0)]

¥1(0) ¥2(0) ... Yn(0) ’ #;(0)

D) W) ... WOl |ad] |00 "
W) @ e ||| T 5w |

ST) D |] |50

1) W) .. W), 0]

Once the values for ozz[j } are known, the entire trajectory 2;(t) is therefore known!

Note that this approach is not strictly limited to specifying the initial and final conditions.
It is also possible to specify other constraints on z; and its derivatives as long as they are
equality constraints. This is accomplished by simply adding equations corresponding to the
desired constraints to the linear system of equations (14). However, if too many constraints
are added the linear system (14) may not have a solution (i.e. the system is over-determined).
Assuming the constraints are not conflicting, this problem can typically be fixed by adding
additional basis functions.

To summarize, for differentially flat nonlinear systems, the motion planning and control
problem can be greatly simplified by planning in the flat output space. This is possible
because of nonlinear functions that allow the flat output trajectory to be directly mapped
to state and control trajectories that satisfy the system dynamics.

3.3.2 Constraints and Time Scaling

As previously shown, some constraints (e.g. boundary conditions) can be imposed on the
trajectory by converting them into conditions on z and its derivatives, and then solving the
linear system of equations (14). However, applying bound constraints can be slightly more
challenging since they are expressed as inequality constraints rather than equality constraints.
Nonetheless, bound constraints are common in robotics and therefore it is important to be
able to consider them in the trajectory generation process. For example, the simple car robot
from Example 3.1 could have an upper bound on its speed:

0] < Vmax-

One technique for handling these types of constraints is to use time scaling. The general
approach to satisfy bound constraints by time scaling is:

1. Specify boundary conditions and solve the linear system of equations (14) to get a
candidate trajectory x(t) with control inputs w(t).

2. If the candidate trajectory violates any bound constraints, generate a new trajectory
by keeping the same geometric path but decreasing the rate at which it moves along
the path.

3.3.3 Geometric Path

A geometric path is a sequence of states for the robot that is not associated with time. Given
a candidate trajectory x(t), the geometric path can be defined by alternatively expressing
the trajectory as x(t) = x(s(t)) where s is a new “path” parameter and s(t) is defined
with s(0) = s, s(T') = sy, and $(¢) > 0. A common choice for the path parameter s
is the arc length along the path. The geometric trajectory is then written as just x(s),
such that the state is now a function of the position along the path and not time. Note
that (t) : [0,7] — R" and x(s) : [so,sy] — R" are actually two different functions. In
particular, the function x(t) can be derived from @(s) by the definition of the function
s(t) : [0,T] — [so, s¢] and the composition x(s(t)).

3.3.4 Time Scaling

For some systems, once the geometric path x(s) has been extracted from the candidate
trajectory «(t), it is possible to arbitrarily redefine new trajectories with different time
scales by simply redefining s(¢). In other words parts of the original candidate trajectory
can be sped up or slowed down as desired.

To motivate why time scaling is important we can consider a simplified problem that does
not involve a dynamics model. In particular, consider a scalar variable x € R and a desired
geometric path that connects xy and x; that is parameterized as z(s) = x¢ + s(xy —) for
s € [0,1] (note that x(0) = zo and x(1) = zy). By choosing how s varies in time (i.e. the
function s(t)) this geometric path can be transformed into many different trajectories, x(t).
As a simple choice, the function s(t) can be parameterized as the cubic polynomial:

s(t) = %tQ — %ti”.
This specific choice ensures that s(0) = 0, s(7) = 1, and $(0) = $(T") = 0 such that the
trajectory will be defined over the time interval ¢ € [0,T]. Substituting this function into
x(s) then yields an expression for the trajectory z(t):

3 2
x(t) = zo + (ﬁtQ — ﬁt3)(xf — xp).

One easy way to scale the trajectory in this case is to simply change 7', with larger values
of T" meaning that it will take longer for x to traverse the geometric path from zy to z¢. In
fact, the maximum velocity can also be computed as:

. 3
Tmax = ﬁ(xf — xp).

Therefore, not only does rescaling the trajectory by changing T' make the path traversal time
change, but it can also be used to decrease quantities such as the maximum velocity!

Time Scaling with Differential Models: Some additional considerations need to be
made when time-scaling trajectories that must also satisfy differential models. First, note
that the time derivative of the state can be rewritten by using the chain rule:

da(t) da(s) ds(t)
2O =0 = Tas @

Now consider a candidate trajectory x(¢) and an associated geometric path x(s) for some
s(t) that is defined over the interval ¢ € [0, 7] with s(0) = s¢ and s(T") = sy. Since x(t) is a
trajectory of the dynamics (8), the geometric path x(s) and time scaling law s(t) satisfy

dx(s)ds(t)
P _ (), u(s)). (15)

for every point s € [sg, s¢].)
To design a new time scaling law 5(¢) over some potentially new time interval ¢ € [0, T

where 5(0) = so and 5(T") = sy, it is important to note that the dynamics equations must
still be satisfied®. In other words, for every § € [sg, s¢]:

dx(s) .
=5 = afa(s) a(9)) (16
ds
Since the geometric path is fixed, the terms dfl—(;’) and x(S) are fixed. Thus a new time scaling

law 5(t) is only admissible if a new control @(3) can also be found that guarantees that (16)
holds. Luckily, for some specific systems this is easy with the appropriate choice of path
parameter s.

Example 3.2 (Time Scaling for Simple Car Model). Consider again the simple car model
(7) from Example 3.1. Suppose a candidate trajectory x.(t) with control u.(t) has been
defined by leveraging the differential flatness of the model (i.e. setting up and solving (14)
and then mapping the flat outputs z.(t) into the state and control). For this system a good
choice for the path parameter is the arc-length, such that

S(t) = /0 o(E)dr, () = v(t).

With this choice of path parameter the geometric path function x.(s), s = 0, and
S = Lpan are all fixed (where Ly, is the total length of the path). Rewriting the dynamics
(16) based on the simple car model:

dre(s) . . _
= v(8) cos 0.(3),

dye(3) = _ o
e v(8)sin6,.(3),

do.(3) . wv(3) _
FF iy tan ¢(3)

3The geometric path is still defined on the interval [sg, s] so this interval must remain the same for any
new time scaling law, but the time interval can change.

10

Any choice of the time scaling function §(¢) must be able to satisfy these equations, and
note that the trivial choice of 5(t) = s(¢) will automatically satisfy these equations with the
candidate control inputs w.(t).

Since the choice of the path parameter yields § = v(38), these equations can be further
simplified:

dz.(3) .

T = oo 0.(3),
dy.(3) . .
T = SIHGC(S),
W05 1.
W = Ltanqb(s).

The first two equations are guaranteed to be satisfied for all 5 € [sg, s¢] because the original
candidate trajectory satisfies the dynamics. Additionally, the third equation is guaranteed
to be satisfied by choosing ¢(5) = ¢.(5) (i.e. using the same steering input as with the
candidate trajectory).

This is interesting because it means that the equations are all satisfied independently of
the choice of 5. Therefore, since 5§ = v(3) this means that the speed input can be chosen
arbitrarily while maintaining the same geometric path! This is extremely useful because it
means that bound constraints on the speed |v(t)| < vyax can be easily enforced.

Time Scaling with Kinematic Models: Time-scaling trajectories is much more straight-
forward when kinematic models are used. Consider the case where the model of the system
is derived from k Pfaffian constraints A”(x)& = 0. In this case the kinematic model can be
written in the form:

z = G(x)u, (17)

where the columns of the matrix G(z) span the null space of the matrix AT (z). Now again
consider a path parameter s that is used to reparameterize trajectories x(t) as x(s(t)), and
satisfies s(0) = so, s(T) = sy, and §(¢) > 0%. Rewriting the time derivative of the state using
the chain rule yields:

d

%S = G(2)u(t). (18)
By making a substitution that w(t) = u,(s)$ the dynamics can be further written as:

dx(s)

The terms wu,(s) are referred to as geometric controls, since they are defined only with
respect to the path parameter s. Critically, (19) says that once the geometric controls u,(s)
are defined, the entire geometric path x(s) is also defined! The choice of the timing law s(t)

4The condition $(t) > 0 is critical to ensure that the function s(¢) is invertible. In other words, to
guarantee that there is a one-to-one mapping between ¢ and s.

11

can then be chosen in any manner and it will not change the geometric path, but will change
the time trajectory «(t). In particular, once the geometric control u,(s) and timing law are
chosen, the actual controls are computed simply by the previous relationship w(t) = u,(s)s.

Based on this analysis, the procedure for rescaling a trajectory of a kinematic model can
be made more concrete. First, consider a given trajectory @ (¢) with control w(t) defined over
t € [0, T] that satisfies the kinematic model (17). For simplicity, consider the path parameter
s to be arc-length of the trajectory such that s(0) = 0 and s(T") = Lpaen. The following steps
can then be used to define a new control input @(t) that will make the kinematic model
follow the same geometric path but with a different time scale:

1. Determine s(t) based on the original trajectory @ (¢). In other words, figure out how
far along the trajectory the system is at each time t. Then reparameterize the control
u(t) as a function of s, u(s(t)).

2. Compute the geometric controls uy(s) = u(s(t))/s(t) for each point s € [sq, s].

3. Define a new timing law 3(¢) that satisfies 5(0) = 0 and 5(T) = Lyam with 5 > 0 over
the interval [0, T7.

4. Compute the new control @(t) = u,(5(t))5(t) for all t € [0, 7).

Example 3.3 (Time Scaling for Unicycle Model). Consider the kinematic unicycle model:

T = wvcosb,
Yy =wvsinb, (20)
0= w,

where (z,y) is the position and 6 is the orientation, v is the speed, and w is the rotation
rate. The state x is defined as & = [z, y, 0]7 and the control is defined as u = [v, w|’.

To time-scale trajectories of this system, consider the use of arc-length as path parameter:

such that for a trajectory defined on the interval ¢ € [0,7] with total length Lyum, the
path parameter is defined with s(0) = 0 and s(7") = Lpan. With this choice, the geometric
controls are given by:

where v(s(t)) has been substituted in for 5(¢). Therefore if a new timing law §(¢) is introduced
this will automatically define a new velocity ©(§) at each point 3, which can then be used to
solve for the new w inputs by:

D(3) = wy(8)5(t) = —=0(3).

12

Alternatively, since it is easier to work with the velocity directly rather than 3(¢), in this case

it is possible to just specify ©(3) for all § € [0, Lpatn] and then to compute &(5) = j((;)f)(é)
Then, to determine the new controls as functions of time rather than s, it can be noted that

r(s) = /%

defines a function 7(s) that maps each point s € [0, Lyan] to a new time.

References

[Kir04] Donald E. Kirk. Optimal Control Theory: An Introduction (Dover Books on Elec-
trical Engineering). Dover Publications, 2004.

[Mur09] Richard M Murray. Optimization-Based Control. 2009.

13

