
AA274A: Principles of Robot Autonomy I
Course Notes

The previous chapter on finite state machines provided an introduction into high-level
robot behavior specification. Another important topic along this thread is sequential decision
making, where the robot must make a series of decisions to accomplish an objective in
an optimal way. This chapter provides an introduction to fundamental topics in decision
making, including for problems where there is some uncertainty (e.g. uncertainty about the
robot’s state or about the environment).

21 Sequential Decision Making

In addition to the motion planning and control problems discussed in earlier chapters (which
focus on low-level tasks), there exist a broad range of situations where higher-level au-
tonomous decision making is required. For example when deciding whether it is time for
a self-driving car to cross an intersection, or whether a robot should first complete task A
or task B. Two of the fundamental challenges associated with robotic decision making are
that sequences of decisions must be made (which requires reasoning about future actions
and observations) and that uncertainty may exist in the operating environment. This chap-
ter presents a modeling framework for addressing decision making problems and will also
introduce dynamic programming, a fundamental approach for solving these problems .

21.1 Deterministic Decision Making Problem

The standard mathematical formulation for decision making problems includes several com-
ponents: a model of the robot’s behavior, a set of admissible controls, and a cost function.
This set of components is quite similar to the components used in trajectory optimization
problems discussed in previous chapters, however decision making problems are generally
represented in discrete-time rather than in continuous-time1.

In the deterministic decision making problem, the model of the robot is expressed in
discrete-time as:

xk+1 = fk(xk,uk), k = 0, . . . , N − 1, (1)

1There is a continuous-time formulation, known as the Hamilton–Jacobi–Bellman formulation.

1

where x is the robot’s state, u is the control, fk defines how the robot’s state changes at time
step k, and N is an integer that defines a finite planning horizon for the decision making
problem. There are generally no restrictions on how the functions fk are defined, they could
come from a physics-based dynamics/kinematics model or even a higher-level state transition
model similar to the finite state machine from the previous chapter.

It is also generally assumed that only some control actions are admissible at a given state,
which denoted by the set U(xk). For example a car may only have an option to turn left or
right when it is at an intersection. Therefore the control constraints for the robot at time
step k are given by:

uk ∈ U(xk). (2)

Again, there are generally no restrictions on how the set of admissible control is defined.
For example U(xk) could be a finite set of actions, it could be a convex region of allowable
inputs, etc.

The cost function is assumed to be additive, and is defined as:

J(x0,u0, . . . ,uN−1) = gN(xN) +
N−1∑
k=0

gk(xk,uk), (3)

where gN is a terminal state cost function and gk for k = 0, . . . , N − 1 are stage cost
functions. These individual cost functions are also not restricted to a particular form (e.g.
convex, differentiable, etc.).

Definition 21.1 (Deterministic Decision Making Problem). The deterministic decision mak-
ing problem can be expressed for the system model (1), control constraints (2), and cost
function (3) as:

J∗(x0) = min
uk∈U(xk),k=0,...,N−1

J(x0,u0, . . . ,uN−1). (4)

Notice that this problem is used to compute an open-loop control sequence {u0, . . . ,uN−1}
given an initial condition x0, which is similar to the trajectory optimization problems seen
in earlier chapters. However, this problem is generally quite hard to solve since there is no
guarantee that the model (1) and cost function (3) have any particular structure that can be
leveraged to make the optimization problem amenable to numerical optimization algorithms.
While it is theoretically possible to solve the problem through a brute force search over all
possible combinations of sequences {u0, . . . ,uN−1}, this leads to a combinatorial explosion
of options and is therefore not possible in practical settings (except of course for very small
problems).

21.1.1 Principle of Optimality (Deterministic)

Fortunately, there is in fact an underlying structure to the deterministic decision making
problem that can be leveraged to make the problem easier to solve. This structure is com-
monly referred to as the principle of optimality.

2

Figure 1: Starting from point a, let the green path a − b − e be the optimal path from a
to e, with a total cost of J∗ae = Jab + Jbe. The principle of optimality in this case says that
the path b− e must therefore be the optimal path when starting from point b. This can be
proven by contradiction, since if the path b − c − e had a lower cost than path b − e (i.e.
Jbce < Jbe), then the original path a− b− e cannot be optimal!

The principle of optimality for deterministic systems is that for a sequence of optimal
decisions, the tail of the optimal sequence is also optimal for a tail subproblem. For a concrete
example see Figure 1. This can greatly simplify the overall problem, since you can “reuse”
optimal paths for different scenarios. More formally, the principle of optimality is given by
the following theorem:

Theorem 21.2 (Principle of Optimality (Deterministic)). Let {u∗0,u∗1 . . . ,u∗N−1} be an op-
timal control sequence to the deterministic decision making problem (4) with a given initial
condition x∗0, such that the resulting optimal state sequence is {x∗0,x∗1 . . . ,x∗N}. Then, the
tail sequence {u∗k, . . . ,u∗N−1} is an optimal control sequence when starting from x∗k and min-
imizing the cost from time k to time N

Jtail(xk,uk, . . . ,uN−1) = gN(xN) +
N−1∑
m=k

gm(xm,um).

To see how the principle of optimality can be applied to simplify the decision making
problem, consider the scenario in Figure 2. In this case it is desired to find an optimal path
from point b to point f , and it is assumed that optimal paths from c, d, and e to f are
already known. A brute force search over all possible paths in this problem would require
nine paths to be evaluated:

{b− c− f, b− c− d− f, b− c− d− e− f, b− d− c− f, b− d− f,
b− d− e− f, b− e− d− c− f, b− e− d− f, b− e− f}.

However, by leveraging the principle of optimality the number of candidate paths is reduced
to three:

b− c− f, b− d− f, b− e− f.

3

In other words, the principle of optimality allows the search to be performed over immediate
decisions by also concatenating the optimal tail decisions! This procedure is generally imple-
mented backward in time, for example in Figure 2 the point f (the goal) is first evaluated,
then the points c, d, and e, and then finally the point b.

Figure 2: Suppose the optimal paths from points c, d and e to f are known (shown in
green). By using the principle of optimality, an optimal path from point b to f can be found
by only searching over paths from b to c, d, and f , and determining the lowest cost from the
candidates {Jbc +J∗cf , Jbd +J∗df , Jbe +J∗ef}. In other words, the optimal tails can be leveraged
to reduce the total number of paths that need to be considered when finding an optimal
path from b to f !

21.1.2 Dynamic Programming (Deterministic)

The dynamic programming (DP) algorithm globally solves the deterministic decision making
problem (4) by leveraging the principle of optimality2. The dynamic programming algorithm
is given in Algorithm 1, where it can be seen that a backward-in-time recursion is used and
at each step a local optimization is performed (this local optimization is referred to as
the Bellman equation), leveraging the optimal tail costs from the previous iteration. The
output of the dynamic programming algorithm is a set of costs J∗k (xk) for each time step
k = 0, . . . , N and states xk, which provide the optimal tail cost for the tail subproblem.

Given an initial condition x0, the optimal control sequence {u∗0, . . . ,u∗N−1} that solves
the deterministic decision making problem can be computed with a “forward pass”, where:

u∗0 = arg min
u0∈U(x0)

g0(x0,u0) + J∗1 (f0(x0,u0)).

2Note that the principle of optimality is a fundamental property that is actually utilized in almost all
decision making algorithms, including reinforcement learning.

4

J∗N(xN) = gn(xN), for all xN
for k = N − 1 to 0 do

J∗k (xk) = min
uk∈U(xk)

gk(xk,uk) + J∗k+1(fk(xk,uk)), for all xk

end
return J∗0 (·), . . . , J∗N(·)

Algorithm 1: Dynamic Programming (Deterministic)

The next state is then computed as x∗1 = f0(x0,u
∗
0), and the process is repeated:

u∗1 = arg min
u1∈U(x∗

1)

g1(x
∗
1,u1) + J∗2 (f1(x

∗
1,u1)),

until the full trajectory and optimal control is specified.
Note that in practice the DP algorithm is not practical for continuously values states x,

since an infinite number of states would have to be iterated over. Therefore one possible
modification to handle continuously valued states is to quantize the state space into a finite
set of states (other approaches, such as interpolation, are also possible). Also, it is interesting
to note that the addition of control constraints can actually simplify the procedure, since it
restricts the number of possible options that need to be considered!

Example 21.1 (Deterministic Dynamic Programming). Consider the environment shown in
Figure 3, where the goal is to start at point a and reach point h while incurring the smallest
cost. In this problem the state is represented as the current location (i.e. a, b, etc.), and the
control constraints are encoded by the arrows indicating possible directions of travel (e.g. at
point c it is possible to either go right or up, but not down or left). The cost of traversing
between two points is also denoted in Figure 3.

To implement the DP algorithm, the final point h is chosen as xN , and the DP recursion
begins with:

J∗N(h) = 0,

since there is no cost to stay at point h. Moving backward in time, it can be seen that the
possible states xN−1 that can transition to xN = h are the points h, e, and g (assuming it
is possible to stay at h with no cost). Therefore in the first step of the DP recursion:

J∗N−1(h) = 0 + J∗N(h) = 0, u∗N−1(h) = stay.

J∗N−1(e) = 8 + J∗N(h) = 8, u∗N−1(e) = right,

J∗N−1(g) = 2 + J∗N(h) = 2, u∗N−1(g) = up,

Note that J∗k (h) = 0 for all k ≤ N , and therefore it will not be explicitly included in the
following steps. In the next step:

J∗N−2(e) = 8 + J∗N−1(h) = 8, u∗N−2(e) = right,

J∗N−2(g) = 2, u∗N−2(g) = up,

J∗N−2(d) = 3 + J∗N−1(e) = 11, u∗N−2(d) = right,

J∗N−2(f) = 3 + J∗N−1(g) = 5, u∗N−2(f) = right,

5

Figure 3: A deterministic decision making problem where the goal is to move from point a
to point h while incurring the minimal amount of cost. The green path indicates the optimal
path. This problem is solved by dynamic programming in Example 21.1.

At this point, these optimal tail costs can be considered to be the optimal costs associated
with control actions that lead from e, g, d, or f to the end point h in two steps! Continuing
on:

J∗N−3(e) = min{8 + J∗N−2(h), 2 + J∗N−2(f)} = 7, u∗N−3(e) = down,

J∗N−3(g) = 2, u∗N−3(g) = up,

J∗N−3(d) = 3 + J∗N−2(e) = 11, u∗N−3(d) = right,

J∗N−3(f) = 5, u∗N−3(f) = right,

J∗N−3(a) = 8 + J∗N−2(d) = 19, u∗N−3(a) = right,

J∗N−3(c) = min{5 + J∗N−2(d), 3 + J∗N−2(f)} = 8, u∗N−3(c) = right.

Interestingly, it can be seen that it is now possible to accomplish the objective (i.e. go from
point a to h) in 3 time steps (i.e. on path a − d − e − f) and incur an optimal cost of 19.
However it turns out that an even lower cost is achievable if the number of time steps is

6

increased further! Continuing the DP recursion:

J∗N−4(e) = 7, u∗N−4(e) = down,

J∗N−4(g) = 2, u∗N−4(g) = up,

J∗N−4(d) = 3 + J∗N−3(e) = 10, u∗N−4(d) = right,

J∗N−4(f) = 5, u∗N−4(f) = right,

J∗N−4(a) = 8 + J∗N−3(d) = 19, u∗N−4(a) = right

J∗N−4(c) = min{5 + J∗N−3(d), 3 + J∗N−3(f)} = 8, u∗N−4(c) = right,

J∗N−4(b) = 9 + J∗N−3(c) = 17, u∗N−4(b) = right,

and finally with one more iteration:

J∗N−5(e) = 7, u∗N−5(e) = down,

J∗N−5(g) = 2, u∗N−5(g) = up,

J∗N−5(d) = 10, u∗N−5(d) = right,

J∗N−5(f) = 5, u∗N−5(f) = right,

J∗N−5(a) = min{8 + J∗N−4(d), 5 + J∗N−4(b)} = 18, u∗N−5(a) = right

J∗N−5(c) = min{5 + J∗N−4(d), 3 + J∗N−4(f)} = 8, u∗N−5(c) = right,

J∗N−5(b) = 9 + J∗N−4(c) = 17, u∗N−5(b) = right.

Additional iterations are not included in this example because the costs and optimal decisions
will no longer change with longer horizons (see for yourself!). Therefore it can be seen that
with a sufficiently long horizon (N ≥ 5), the optimal path from a to h is a−d−e−f −g−h
and incurs a cost of 18. Not this process has actually given a lot more information than
what was original asked for. In particular, given any starting point and any horizon it is
straightforward to generate an optimal control sequence! For example, if you wanted to start
at point c and get to h in N = 3 steps you could immediately see that the optimal path is
c− f − g − h and the optimal cost is 8.

21.2 Stochastic Decision Making Problem

In the stochastic decision making problem it is assumed that there is some uncertainty in
the robot’s behavior or in the environment. This uncertainty is captured in the stochastic
discrete-time robot model:

xk+1 = fk(xk,uk,wk), k = 0, . . . , N − 1, (5)

where wk represents a stochastic disturbance term. Additionally, it is assumed that this
disturbance has a known conditional probability distribution Pk(wk | xk,uk). Note that it
is assumed that the disturbance is only dependent on the current state xk and control uk,
and not states from earlier in the robot’s history. This is another example of the Markov
assumption, which was similarly used to develop the algorithms for localization and filtering
in previous chapters.

7

Another main difference between the stochastic decision making problem and the deter-
ministic problem is that a control policy is computed in the stochastic case. A control policy,
usually denoted u = π(x), is a function that maps the state x to a control u, and therefore
defines a closed-loop controller (whereas in the deterministic setting an open-loop sequence
was computed). Generally speaking, the search for control policies makes the problem more
difficult to solve, but is typically required in stochastic settings because uncertainty would
lead to undesirable behavior under open-loop control plans. Specifically, in the stochastic
decision making problem the policies π = {π0, . . . , πN−1} are computed, which define the
controls by uk = πk(xk).

Of course the cost function is also modified to handle the uncertainty. In particular, a
risk-neutral formulation is used (i.e. minimize the cost on average), where the cost is defined
by the expected value:

Jπ(x0) = Ew

[
gN(xN) +

N−1∑
k=0

gk(xk, π(xk),wk)
]
, (6)

where the expectation is over the stochastic variables w. The stochastic decision making
problem can now be stated as:

Definition 21.3 (Stochastic Decision Making Problem). The stochastic decision making
problem can be expressed for the system model (5), control constraints (2), and cost function
(6) as:

J∗(x0) = min
π

Jπ(x0). (7)

21.2.1 Principle of Optimality (Stochastic)

The principle of optimality can again be applied in the stochastic setting, and the intuition
is identical to the deterministic case (however the proof is slightly different because the rea-
soning is in terms of probability distributions). The principle of optimality in the stochastic
setting is stated formally as:

Theorem 21.4 (Principle of Optimality (Stochastic)). Let π∗ = {π∗0, π∗1 . . . , π∗N−1} be an
optimal policy for the stochastic decision making problem (7), and assume the state xk is
reachable. Then, the tail policy sequence {π∗k, . . . , π∗N−1} is an optimal policy sequence when
starting from xk to minimize the cost from time k to time N .

Again, by leveraging the principle of optimality the decision making problem can be
simplified to making immediate decisions by concatenating optimal tail policies.

21.2.2 Dynamic Programming (Stochastic)

The dynamic programming algorithm for the stochastic setting is also quite similar to DP for
deterministic problems, and is given in Algorithm 2. Once Algorithm 2 is run, the optimal
policy is defined by:

π∗k(xk) = min
uk∈U(xk)

Ewk

[
gk(xk,uk,wk) + Jk+1(fk(xk,uk,wk))

]
.

8

JN(xN) = gn(xN), for all xN
for k = N − 1 to 0 do

Jk(xk) = min
uk∈U(xk)

Ewk

[
gk(xk,uk,wk) + Jk+1(fk(xk,uk,wk))

]
, for all xk

end
return J0(·), . . . , JN(·)

Algorithm 2: Dynamic Programming (Stochastic)

Example 21.2 (Stochastic Dynamic Programming). Consider an inventory control problem,
where the available stock of a particular item is the state xk ∈ N, the ability to add to the
inventory is the control uk ∈ N, and the demand for the item is a stochastic variable wk ∈ N.
The dynamics of the available stock is modeled as:

xk+1 = max{0, xk + uk − wk},

which models the fact that demand reduces available stock but can also never be negative.
Additionally, consider the control constraints:

xk + uk ≤ 2,

which limits the amount of additional inventory that can be added based on the current avail-
able stock to ensure that xk ≤ 2. The demand wk is assumed to be modeled probabilistically
with a distribution:

p(wk = 0) = 0.1, p(wk = 1) = 0.7, p(wk = 2) = 0.2.

Finally, the cost is given for a horizon of N = 3 as:

E
[2∑
k=0

uk + (xk + uk − wk)2
]
,

which penalizes ordering new stock at each time step and also having available stock at the
next time step (i.e. having to store stock).

The dynamic programming algorithm can then be applied, starting with the end costs:

J3(x3) = 0,

and then recursively computing:

J2(0) = min
u2∈{0,1,2}

E
[
u2 + (u2 − w2)

2
]

= min
u2∈{0,1,2}

u2 + 0.1u22 + 0.7(u2 − 1)2 + 0.2(u2 − 2)2 = 1.3,

J2(1) = min
u2∈{0,1}

E
[
u2 + (1 + u2 − w2)

2
]

= 0.3,

J2(2) = E
[
(2− w2)

2
]

= 1.1,

9

where the last cost is easily evaluated since the constraint makes u2 = 0 the only feasible
choice. The optimal stage policies associated with this step are:

π∗2(0) = 1,

π∗2(1) = 0,

π∗2(2) = 0.

In the next step:

J1(0) = min
u1∈{0,1,2}

E
[
u1 + (u1 − w1)

2 + J2(max{0, u1 − w1})
]

= 2.5,

J1(1) = min
u1∈{0,1,}

E
[
u1 + (1 + u1 − w1)

2 + J2(max{0, 1 + u1 − w1})
]

= 1.5,

J1(2) = E
[
(2− w1)

2 + J2(max{0, 2− w1})
]

= 1.68,

with optimal stage policies:

π∗1(0) = 1,

π∗1(1) = 0,

π∗1(2) = 0.

Finally, in the last step:

J0(0) = min
u0∈{0,1,2}

E
[
u0 + (u0 − w0)

2 + J1(max{0, u0 − w0})
]

= 3.7,

J0(1) = min
u0∈{0,1,}

E
[
u0 + (1 + u0 − w0)

2 + J1(max{0, 1 + u0 − w0})
]

= 2.7,

J0(2) = E
[
(2− w0)

2 + J1(max{0, 2− w0})
]

= 2.818,

with optimal stage policies:

π∗0(0) = 1,

π∗0(1) = 0,

π∗0(2) = 0.

Interestingly, the best scenario occurs with an initial stock of one, rather than have no stock
or too much stock. Also, the policy ends up being the same at all time steps: if you have no
stock you add one item, otherwise you do nothing.

21.3 Challenges and Extensions of Dynamic Programming

Dynamic programming is a powerful algorithm, but suffers from several practical consid-
erations: the “curse of dimensionality”, the “curse of modeling”, and the “curse of time”.
The curse of dimensionality arises because of a exponential growth of the computational
and storage requirements based on the dimension of the state. For example if the state has

10

dimension one (i.e. x ∈ R) and can take on 100 different values, then at each step of the
algorithm the Bellman equation must be solved 100 times. While this may be possible from
a practical perspective, if x ∈ R3 this would lead to 1003 solves of the Bellman equation!
Additionally, extensions to the problems presented in this chapter where the full state is not
known (e.g. because you can only measure some parts of the state), the problem also be-
come intractable. The curse of modeling results from the complexity of modeling stochastic
systems. In particular, it can be very hard to obtain expressions for transition probabilities
for real world systems! Lastly, the curse of time is that the data of the problem may not
be known ahead of time (such that the DP algorithm can be run offline). Therefore it may
be required to solve the DP algorithm online when the data becomes available, or when the
data changes and the problem needs to be resolved.

21.3.1 Reinforcement Learning

The practical challenges related to dynamic programming motivated the development of
suboptimal dynamic programming approaches, which more commonly are referred to as
reinforcement learning approaches. The goal of these approaches is to make approximations
to the original problem that make it more practical for specific settings, such as with high-
dimensional states, when the model is not known, and more. Broadly speaking, there are
two main categories of approximations. The first category includes approximations in the
value space (i.e. where the optimal cost function is approximated). The second category
includes approximations in the policy space (i.e. where the policy is approximated by a
neural network whose weights are optimized over).

References

[Ber19] D. Bertsekas. Reinforcement learning and optimal control. Athena Scientific, 2019.

11

	Sequential Decision Making
	Deterministic Decision Making Problem
	Principle of Optimality (Deterministic)
	Dynamic Programming (Deterministic)

	Stochastic Decision Making Problem
	Principle of Optimality (Stochastic)
	Dynamic Programming (Stochastic)

	Challenges and Extensions of Dynamic Programming
	Reinforcement Learning

