
AA274A: Principles of Robot Autonomy I
Course Notes

So far a number of algorithms for control, trajectory optimization, motion planning, per-
ception, and localization/state estimation have been presented. Almost all of these instances
share a common characteristic: they involve manipulation or observation of continuous vari-
ables. For example, motion planning and control algorithms manipulate the robot’s physical
state (i.e. position, velocity, orientation, configuration) which can take on a continuous range
of values, and perception and localization tasks try to take (continuously valued) information
from the environment and try to estimate the robot’s physical state.

However, for higher-level tasks it is often useful to represent the state of the robot or
environment in terms of a discrete set of variables. For example, consider a robot whose task
is to go from point A to point B, pick up a package, and then deliver it to point C. While
the robot’s physical (continuous) state is crucial for tasks such as controlling the robot to
drive from A to B, it is also important to keep track of what portion of the overall plan
that the robot is currently performing (is the robot currently traversing to B or C, has the
package been successfully picked up, etc.). Additionally, it might be useful to keep track of
other discrete valued states of the robot, such as if a sensor is functioning or not, or whether
or not the robot is in the presence of a human (i.e. for safety). Similar to dynamics/kine-
matics models for the robot’s (continuous) physical state, finite state machines are a useful
framework for modeling discrete higher-level states of the robot and its environment.

20 Finite State Machines

Finite state machines (FSMs) define a computational modeling framework for systems whose
output depends on the entire history of their inputs, and where the number of possible states
of the system is finite. This framework has been used in a wide variety of disciplines, including
electrical engineering, linguistics, computer science, philosophy, biology, and more. FSMs
can also be used in several different ways, including:

1. to specify a desired program or behavior, such as how a vending machine or ATM should
function,

2. to model behavior, for example to analyze the behavior of a control system interacting
with the environment,

1

3. or for predicting behavior, for example to predict what will happen in the future given
some set of inputs to the system.

Generally speaking, designing finite state machines for practical robotic systems can be
extremely time consuming and challenging. In particular, choosing the appropriate set of
states for a particular problem is required to ensure that the model is not overly complex,
but the interactions and transitions between states can also be very hard to specify and
can still lead to complex models. For example, consider the graphical representation of an
example FSM for the popular open source flight software PX4 in Figure 1. Specifying the
full behavior of the system can lead to a complex FSM, even if there are not very many
states. In fact, this FSM is still under continuous development to improve the overall system
behavior!

Figure 1: A graphical representation of a finite state machine example for the open source
flight software PX4. As can be seen, even for a relatively small number of states the FSM can
become quite complex in order to model the full behavior of the system. (Image retrieved
from diydrones.com)

Mathematically, a finite state machine consists of:

1. a finite set of states S,

2. a set of inputs I,

3. a set of outputs O,

4. a next-state function n(it, st) −→ st+1 that maps the input it at time t and current state
st to the next state st+1,

2

https://px4.io/

5. an output function o(it, st) −→ ot,

6. and an initial state s0.

While FSMs can be defined through the mathematical notation above, it is often also useful
to represent them graphically to get a more intuitive understanding of how the system
will behave. In particular, the graph representation is defined with nodes of the graph
representing each state in the set S. Each (directed) edge of the graph corresponds to a
possible transition between states that is defined by a particular input. In other words, each
directed edge is associated with a particular pair (s, i). The outputs for a particular pair
(s, i) are also typically included along each directed edge. This is shown in more detail in
Figure 2.

Figure 2: A graphical representation of a finite state machine with states S = {s0, s1, s2},
inputs I = {i0, i1, i2} and outputs O = {o0, o1}. The directed edges correspond to the next-
state functions and the output associated with each edge is defined by the output function.
For example, in this FSM it can be seen that n(i1, s0) −→ s1 and o(i1, s0) −→ o1.

Example 20.1 (Parking Gate Control). Consider a parking gate control finite state machine
where the goal is to raise the gate when a car arrives and then lower the gate when the car
has passed. Assume sensors are available to tell if a car is at the gate and when the car has
passed through the gate, and also the position of the gate. The control actions the gate can
take are simply raising, lowering, or holding the gate position fixed. Technically, the position
of the gate can vary continuously between the “down” and “up” positions, and the velocity
can also vary continuously. However, in designing a finite state machine to define the overall
logic/behavior for the parking gate, a higher-level abstraction of the set of gate states can
be chosen as:

S = {down, raising, up, lowering}.

The set of inputs to the finite state machine come from the sensors, and can be chosen as:

I = {car waiting, no car waiting, car passed, car not passed,

gate up, gate not up, gate down, gate not down}.

3

Finally, the output of the finite state machine (defining the actions for the gate) are simply:

O = {lower, raise, hold}.

The next-state function then defines the desired behavior for the parking gate. For
example, suppose the current state st = down and the sensor measures that a car is waiting
(it = car waiting). Then, the desired behavior is to output the command ot = raise, and the
next-state function would be:

n(car waiting, down) −→ raising.

Similarly, suppose the gate was just raised for the car to pass such that st = up, but that
the sensor is giving input it = car not passed. In this case the output would be ot = hold,
and the next-state function would be:

n(up, car not passed) −→ up.

A graphical representation of the full car parking gate FSM is given in Figure 3.

Figure 3: A graphical representation of the finite state machine for the parking gate controller
discussed in Example 20.1.

20.1 FSM Architectures

Finite state machines can become quite complex since for every new state added it is possible
to define an exponentially increasing number of new transitions. Strategies for keeping the
complexity of FSMs in check include analyzing for (and removing) redundant states, using
hierarchical FSMs, and using compositions based on common patterns.

4

20.1.1 Reducing Number of States

There exist algorithms that can be used to identify and combine states in FSMs that would
yield the same overall behavior. In particular, two states are equivalent if they have the
same output and for all input combinations transition to the same or equivalent states.

One possible algorithm for reducing states in an FSM is as follows:

1. Place all states into one set.

2. Create a single partition based on the output behavior.

3. Repeatedly partition further based on next state transitions until no further partitions
is possible.

To see this procedure in action, consider the following example:

Example 20.2 (FSM State Reduction). Consider a finite state machine that is used to
detect the sequences 010 or 110. The FSM is shown in Table 1, where it can be seen that
the states are the partial sequences S = {0, 1, 00, 01, 10, 11} and a reset state, the inputs are
I = {0, 1}, and the outputs are booleans O = {True,False} for whether the sequence 010 or
110 has been created. For example, it can be seen that if the current partial sequence is 01
(s4) and a 0 is input, the next state will be the reset state and the output will be True.

State, s n(0, s) n(1, s) o(0, s) o(1, s)
Reset 0 1 False False
0 00 01 False False
1 10 11 False False
00 Reset Reset False False
01 Reset Reset True False
10 Reset Reset False False
11 Reset Reset True False

Table 1: Finite state machine for a sequence detector that accepts digits 0 and 1 and outputs
True if the sequences 010 or 110 is generated.

Now, the FSM in Table 1 can be simplified by removing redundant states! This is
accomplished by first placing all of the states into a single set {Reset, 0, 1, 00, 01, 10, 11} and
creating a partition based on the output behavior. In particular this will generate two sets:

{Reset, 0, 1, 00, 10} : always leads to False output,

{01, 11} : does not always lead to False output.

These sets are then further partitioned based on the next-state function until no further
partitions can be made. In the first step the set {Reset, 0, 1, 00, 10} is partitioned into:

{Reset, 00, 10} : cannot transition to {01,11},
{0, 1} : can transition to {01,11}.

5

and then {Reset, 00, 10} is partitioned as:

{Reset} : can transition to {0, 1},
{00, 10} : cannot transition to {0, 1}.

Therefore, instead of the original seven states (Reset, 0, 1, 00, 01, 10, 11) there are now
only four ({01, 11}, {0, 1}, Reset, {00, 10}). An equivalent (same input/output behavior)
but reduced finite state machine can now be defined, and is shown in Table 2.

State, s n(0, s) n(1, s) o(0, s) o(1, s)
Reset {0,1} {0,1} False False
{0,1} {00,10} {01,11} False False
{00,10} Reset Reset False False
{01,11} Reset Reset True False

Table 2: Reduced finite state machine for a sequence detector that accepts digits 0 and 1
and outputs True if the sequences 010 or 110 is generated.

20.1.2 Hierarchical FSMs

In some cases there might be states that are not truly equivalent, but that might still be
beneficial to group closely together. With this idea, the concepts of super-states (i.e. groups
of closely related states) and generalized transitions (i.e. transitions between super-states)
can be useful. This idea of creating super-states is analogous to graph clustering.

20.1.3 Compositions

Individual state machines can also be composed in a variety of ways depending on their
input/output behavior, including cascade compositions, parallel compositions, and feedback
compositions. Cascade compositions combine two FSMs in sequence where the output vo-
cabulary of one matches the input vocabulary of the other. The new state of the combined
machine is the concatenation of the states of the individual FSMs (see Figure 4). Parallel
compositions run two FSMs side by side, using the same input. Both the state and output
is then the concatenation of the two individual FSMs’ state and output. Finally, feedback
compositions use only a single FSM but only require a partial input and also reuse the output
as input (requires the input and output vocabularies to be the same).

20.2 Implementation Details

There are numerous ways that finite state machines could be implemented in practice. How-
ever, one common approach is to exploit Object Oriented Programming (OOP) by building
the finite state machine as a class. In particular, the class would keep track of the state of
the FSM in a class variable. The state update process could then occur through the use of

6

Figure 4: A cascade composition of two finite state machines.

Figure 5: A parallel composition of two finite state machines.

if/else statements in an update class method, as well as the definition of the FSM output.
An example implementation in Python of the parking gate controller FSM from Example
20.1 is given below:

import rospy as rp
from std msgs . msg import St r ing

class ParkingGateFSM () :
””” Simple FSM f o r park ing ga te c o n t r o l ”””
def i n i t (s e l f) :

rp . i n i t n o d e (’ pa rk ing gate ’ , anonymous=True)
s e l f . s t a t e = ’down ’
s e l f . cmd = rp . Pub l i she r (’ /gate cmd ’ , S t r ing)
rp . Subsc r ibe r (’ / c a r s e n s o r ’ , Str ing , s e l f . c a r c l b k)
rp . Subsc r ibe r (’ / g a t e s e n s o r ’ , Str ing , s e l f . g a t e c l b k)

def c a r c l b k (s e l f , data) :
s e l f . c a r i npu t = data

def g a t e c l b k (s e l f , data) :

7

Figure 6: A FSM feedback composition.

s e l f . ga t e input = data

def run (s e l f) :
r a t e = rp . Rate (10) # 10 Hz
while not rp . i s shutdown () :

i f s e l f . s t a t e == ’down ’ :
i f s e l f . c a r i npu t == ’ no ca r wa i t i ng ’ :

output = ’ hold ’
e l i f s e l f . c a r i npu t == ’ c a r w a i t i n g ’ :

s e l f . s t a t e = ’ r a i s i n g ’
output = ’ r a i s e ’

e l i f s e l f . s t a t e == ’ r a i s i n g ’ :
i f s e l f . ga t e input == ’ gate not up ’ :

output = ’ r a i s e ’
e l i f s e l f . ga t e input == ’ gate up ’ :

s e l f . s t a t e = ’up ’
output = ’ hold ’

e l i f s e l f . s t a t e == ’up ’ :
i f s e l f . c a r i npu t == ’ ca r no t pa s s ed ’ :

output = ’ hold ’
e l i f s e l f . c a r i npu t == ’ ca r pas s ed ’ :

s e l f . s t a t e = ’ lower ing ’
output = ’ lower ’

e l i f s e l f . s t a t e == ’ lower ing ’ :
i f s e l f . ga t e input == ’ gate not down ’ :

output = ’ lower ’
e l i f s e l f . ga t e input == ’ gate down ’ :

s e l f . s t a t e = ’down ’
output = ’ hold ’

s e l f . cmd . pub l i sh (output)
ra t e . s l e e p ()

8

20.3 Other Useful Tools

A useful tool for visualizing finite state machines in ROS is SMACH, which can be though
of as an analogue to RViz. More information about SMACH and how it is used can be found
on the ROS Wiki1.

References

[KWA+11] L. Kaelbling, J. White, H. Abelson, D. Freeman, T. Lozano-Pérez, and I. Chuang.
6.01SC: Introduction to Electrical Engineering and Computer Science I, Spring
2011. MIT OpenCourseWare.

1http://wiki.ros.org/smach

9

	Finite State Machines
	FSM Architectures
	Reducing Number of States
	Hierarchical FSMs
	Compositions

	Implementation Details
	Other Useful Tools

