
AA274A: Principles of Robot Autonomy I
Course Notes

Almost every robot will rely on multiple sensors (including multiple types of sensors) for
perception and localization tasks. This allows the robot to take advantage of the different
strengths of each sensor for a more well-rounded sensing capability. For example a self-
driving car may use both laser rangefinders and radar for measuring distances, since in some
cases one sensor may work better than the other. As another example, a wheeled robot may
use GNSS sensors as well as wheel encoders to estimate position. However, while each sensor
may provide data toward a similar goal (e.g. estimating position or orientation) their sensing
modalities may be drastically different. This chapter covers the topic of sensor fusion, and
provides a discussion on algorithms for effectively leveraging multiple sensing modalities
toward a common objective.

19 Sensor Fusion

Using measurements from multiple sensors (potentially different types of sensors) is an effec-
tive technique for reducing the uncertainty in downstream perception and estimation tasks
(see Figure 1). This is generally the case because individual sensors typically suffer from
limited range, limited field of view, or performance degradation under certain environmental
conditions. Additionally, in single-sensor systems measurement accuracy degradation and
sensor failure can be catastrophic. Alternatively, multi-sensor systems can address these
challenges through redundancy of individual sensors (e.g. to provide full field of view mea-
surements or multiple measurements of the same quantity) or through sensor diversity (e.g.
using sensors with different characteristics to offset limitations of others).

19.1 A Taxonomy of Sensor Fusion

To put the sensor fusion problem into a broader perspective, a taxonomy of sensor fusion
related challenges will now be presented. This includes challenges associated with both fusion
algorithms as well as the measurement data.
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Figure 1: Sensor fusion can reduce uncertainty by providing more well-rounded data. For
example in this scenario the radar sensor may have good accuracy longitudinally but less
accuracy laterally. Contrarily, a camera may provide poor range estimation but good lateral
position estimation. By fusing these two sensor measurements the resulting estimate can be
accurate both longitudinally and laterally.

19.1.1 Data-related Taxonomy

One of the primary challenges with data fusion is the inherent imperfection in the measure-
ment data, including uncertainty (i.e. resulting from sensor noise), imprecision (i.e. resulting
from sensor bias), and granularity (i.e. resulting from sensor resolution). Other important
data-related aspects to sensor fusion include data correlation, disparity, and inconsistency
(e.g. data conflicts, outliers, disorder). Broadly speaking sensor data can experience multiple
types of imperfection at the same time, and so data fusion algorithms should be developed
with robustness in mind.

19.1.2 Fusion-related Taxonomy

At the data-fusion level, it is useful to classify the problem based on the type of data that is
being fused. Low-level fusion problems typically fuse low-level signal data (i.e. time-series
data), intermediate-level problems fuse features and characteristics, and high-level fusion
problems consider decisions. Fusion problems can also be categorized based on the relation-
ship among different sensors used in the fusion process. Competitive fusion problems consider
redundant sensors that directly measure the same quantity. Complementary fusion is used
when different sensors provide complementary information about the environment (e.g. lidar
for short distance ranging and radar for long distance ranging). Finally, cooperative fusion
considers problems where the required information cannot be inferred from a single sensor
(e.g. GNSS localization and stereo vision can be cooperatively used because they measure
fundamentally different environmental quantities). Generally speaking competitive fusion
increases reliability and accuracy of fused information, complementary fusion increases the
completeness of information, and cooperative fusion broadens the types of information that
can be gathered.
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19.1.3 Architectural Taxonomy

Fusion algorithms can also be classified based on their type of architecture, namely whether
they are centralized, decentralized, or distributed. Centralized architectures collect all sen-
sor data first, and then perform computations on the entire set of data. This approach is
theoretically optimal since all information is gathered and operated on at once, but the need
for high levels of communication and processing can be challenging in practice. Decentralized
architectures are essentially collections of centralized systems, and generally still suffer from
the same high demands for communication and processing. On the other hand, distributed
architectures do not collect all sensor information ahead of time but rather perform compu-
tations on local sensor data first, before potentially passing information on for further fusion
tasks. These architectures scale better, but can lead to suboptimal performance because
each sensor is performing local processing (i.e. without having all information).

19.2 Bayesian Approach to Sensor Fusion

Previous chapters presented several algorithms for robot state estimation and localization
based on Bayes’ filter. In fact, these algorithms can be viewed as approaches to solve the
sensor fusion problem. This section explores the Bayesian approach to sensor fusion in
more detail to show exactly how these approaches can blend measurement data to reduce
uncertainty.

Recall that the Bayesian approach is a probabilistic approach that models unknowns as
random variables and quantifies knowledge in the form of probability distributions over the
unknowns. This principled approach is useful for sensors fusion for several reasons. First, it
provides a unified framework for representing knowledge that is compatible with any quantity
and type of sensors and is interpretable. Second, probability distributions implicitly provide
information about uncertainty (e.g. the variance of a Gaussian). Third, Bayes’ rule provides
a principled approach for updating distributions. Finally, they can be used to deal with
missing information and classification of new observations.

Example 19.1 (Competitive Fusion Example). As an example to show how a probabilistic
approach can be used to reduce uncertainty through sensor fusion, consider a case where
two sensors are fused to estimate a single quantity x ∈ R. Specifically, suppose the two
measurements y1 and y2 are normally distributed random variables:
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where the first sensor has a higher precision than the second sensor such that σ2
1 < σ2
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the combined measurement probability is given by:

p(y1, y2 | x) = p(y1 | x)p(y2 | x),
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by assuming conditional independence. By exploiting the product of two Gaussian property
this joint probability distribution is:
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Therefore, given two measurements y1 and y2 the best estimate of the quantity x is given
by µ, which is a weighted average of the two measurements. In particular, more weight is
given to the measurement with higher precision (i.e. higher variance σ2

i ) and the overall
uncertainty will decrease!

19.2.1 Kalman Filter Sensor Fusion

The Kalman filter from the previous chapter on parametric state estimation techniques is
a common tool for sensor fusion problems. Recall that the Kalman filter assumes a linear
state transition (dynamics) model:

xt = Atxt−1 +Btut + εt, (1)

and a linear measurement model:
zt = Ctxt + δt, (2)

where x is the state of the system and z are the measurements. Additionally, the Kalman
filter assumes the belief distribution of x and the noise terms ε, δ are all Gaussian:

bel(xt) ∼ N (µt,Σt), εt ∼ N (0,Rt), δt ∼ N (0,Qt),

where Rt and Qt are the covariances of the state transition and measurement noise models,
respectively. With these assumptions the Kalman filter algorithm uses a recursive “predict
then correct” approach and the belief will always remain normally distributed.

This algorithm can be used for sensor fusion since the measurement vector z can include
measurements from any type of sensor, as long as a linear relationship exists between the
measurement and the underlying state x that is to be estimated. At each step of the Kalman
filter algorithm, every measurement at time t is simultaneously used to update or “correct”
the state predicted from the state transition model. Additionally, the Kalman filter takes
into account the covariance Rt, which includes the covariance of each individual sensor.
In fact, the Kalman filter will implicitly favor measurements with lower covariance when
performing the correction step1.

A useful trick for applying the Kalman filter to sensor fusion problems is to also note
that the state x can contain any type of information, it is not strictly limited to the state
usually associated with the robot’s dynamics or kinematics. For example, the state could be
augmented with auxiliary states such as sensor bias or offsets, or variables to define sensor
and actuator health.

1Specifically, this occurs during the computation of the Kalman gain.
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Example 19.2 (Kalman Filter Multi-Sensor Fusion Example). Consider a self-driving car
that has an inertial measurement unit (IMU), a GNSS receiver, and a Lidar unit and where
the goal is to leverage all of these sensors to estimate the position, velocity, and acceleration
of the vehicle. This suite of sensors can provide noisy position estimates (Lidar and GNSS)
as well as noisy acceleration measurements (IMU). For this application, sensor fusion can be
accomplished through a Kalman filter.

First, consider a very simple kinematics model that only models longitudinal motion:

ṗ = v, v̇ = a,

where p is the longitudinal position, v is the longitudinal velocity, and a is the longitudinal
acceleration. This model is then discretized in time by choosing a sampling time Ts, yielding
the linear difference equation:pt+1
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where the state is defined as x = [p, v, a]T , and ε is Gaussian process noise.
It is assumed that the lidar and GNSS sensors directly measure the position p, and that

the IMU directly measures the acceleration a, such that the measurement model is:zlidar,tzgnss,t
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where δ is Gaussian measurement noise with zero mean and covariance:
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Figures 2 and 3 show results of the application of the Kalman filter algorithm for fusing

these sensor measurements into position estimates. Figure 2 presents a case where the GNSS
sensor is not used, and as can be seen the noisy high-variance lidar measurements result in a
noisy estimate of the ground truth signal. However, with the addition of the lower-variance
GNSS sensor in Figure 3 the estimate of the position is much more accurate. Generally
speaking the estimate would also be more accurate even with the addition of a sensor that
was even more noisy than the lidar, but the impact would not be as significant.

19.3 Challenges in Sensor Fusion

Sensor fusion problems can generally be quite challenging, and can vary significantly from
application to application. Some of the more common problems in sensor fusion include
registration, bias, correlation, data association, and out-of-sequence measurements. The
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Figure 2: Kalman filter sensor fusion for Example 19.2. The position of a vehicle is estimated
using only noisy lidar and IMU data, and the resulting estimate tracks the ground truth,
but with a significant amount of noise.

registration problem is that coordinates (both time and space) of different sensors may not
always be aligned, which is necessary to ensure they can be appropriately combined. Biases
can also arise due to transformations of the data into the unified set of coordinates. Correla-
tion between sensors can also occur, even if they are independently collecting data, and the
knowledge of correlation between sensors can have an impact on the best way to fuse the
information. In some robotics applications, data association can also be a challenge. One
simple example is in multi-target tracking problems, which is similar to the correspondence
problem in SLAM problems. Finally, out-of-sequence measurements also pose a logistical
challenge in practical sensor fusion applications. These issues often arise due to communi-
cation limitations among agents in multi-agent settings.
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Figure 3: Kalman filter sensor fusion for Example 19.2. The position of a vehicle is estimated
using noisy lidar, GNSS, and IMU data. Accuracy of the estimate is significantly improved
over the case in Figure 2 where the GNSS measurement was not included, demonstrating
the power of sensor fusion.
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