
AA274A: Principles of Robot Autonomy I
Course Notes

The previous chapter introduced the robot localization problem, but assumed that the
map m was given. However, in many real-world robotics applications a map might not be
known ahead of time, and therefore it wold need to be built on-the-fly. This problem, which
involves using information about measurements z and controls u to simultaneously localize
the robot in the world and build a map, is known as simultaneous localization and mapping
(SLAM).

18 Simultaneous Localization and Mapping (SLAM)

Many real-world settings are challenging for robotic autonomy because both the map and
the relative pose of the robot are unknown. For example, such a situation would occur
in autonomous search-and-rescue operations where a robot needs to explore an unknown
environment. The SLAM problem addresses this challenge by estimating the robot pose and
constructing a map of the environment at the same time, based only on measurement z1:t

and control u1:t data.
Generally speaking there are two types of SLAM problems that can be considered. The

online SLAM problem aims to estimate the posterior p(xt,m | z1:t,u1:t) over the robot’s
current pose xt and the map m. Alternatively, the full SLAM problem estimates the entire
path of the robot instead of just the current position, namely p(x1:t,m | z1:t,u1:t). The
difference between these two SLAM problems is demonstrated graphically in Figure 1. Both
SLAM problems experience the same challenge: error in the pose causes error in map es-
timation and error in map estimation causes error in the pose estimate. In this chapter,
algorithms for both the online and full SLAM problems are studied.

18.1 EKF SLAM Algorithm

One of the earliest approaches to the online SLAM problem leverages the extended Kalman
filter, and is essentially an extension of the EKF localization algorithm discussed in the
previous chapter. Again, the key aspects to the approach are the exploitation of Gaus-
sian distributions to model the robot’s belief distribution bel(xt), and state transition and
measurement models. It will also be assumed that the map is feature-based:

m = {m1,m2, . . . ,mN},

1

Figure 1: Difference between online and full SLAM, where online SLAM only estimates the
current robot pose while full SLAM also estimates the robot’s history.

where mi is the i-th landmark with coordinates (mi,x,mi,y). As in the EKF localization
problem, the measurement correspondences can either be assumed to be known or unknown
(more common in practice).

The main idea behind EKF SLAM is that the coordinates (mi,x,mi,y) of each landmark
mi are added, along with the robot pose xt, to an augmented state vector:

yt =

xt
m1

...
mN

 , (1)

where mi = [mi,x,mi,y]
T . With the new state vector y the online SLAM problem is to

compute the posterior:
bel(yt) = p(yt | z1:t,u1:t).

EKF SLAM approaches have the advantage of being computationally efficient such that
they can be run online, and are also well understood from a theoretical perspective. They
can also provide good performance when the uncertainty is low. However, their main dis-
advantages are that they are restricted by the Gaussian assumption to unimodal estimates,
and that performance can degrade in settings with high uncertainty or when the states are
not well approximated by normal distributions.

18.1.1 State Transition and Measurement Models

Assuming that the landmarks mi ∈ m are static, the state transition model for the aug-
mented state vector y is assumed to be given by:

yt = g(ut,yt−1) + εt, εt ∼ N (0,Rt),

2

where the nonlinear vector function g is defined by:

g(ut,yt−1) =

g̃(ut,xt−1)
m1,t−1

...
mN,t−1

 ,
and g̃ is the original robot motion model (e.g. differential drive robot model). The noise
covariance is also defined as:

Rt =

[
R̃t 0
0 0

]
,

where R̃t is the noise covariance associated with the original robot motion model and the
rest of the matrix are zeros. The Jacobian of the augmented motion model is defined as
Gt := ∇yg(ut,µt−1) where µt−1 is the expected value of the belief distribution bel(yt−1) at
the previous time.

The measurement model is defined in the same way as the previous chapter:

zit = h(yt, j) + δt,

where δt ∼ N (0,Qt) is Gaussian zero-mean noise and j is the index of the map feature
mj ∈ m that measurement i is associated with. The Jacobian is also defined in the same
way with Hj

t = ∇yh(µ̄t, j), where µ̄t is the predicted mean (that results from the EKF
prediction step) of the distribution bel(yt).

18.1.2 EKF SLAM with Known Correspondences

As was the case in EKF localization, it is important to specify whether the the correspon-
dences cit between the i-th measurement zit and the associated landmark in the map is known.
In this section an EKF SLAM algorithm will be developed which assumes the correspon-
dences ct = [c1

t , . . .]
T are known.

Algorithm 1 presents the EKF SLAM algorithm with known correspondences. It is almost
identical to the EKF localization algorithm from last chapter, except that the state vector is
augmented with the landmark positions and the positions of these landmarks are initialized
when they are first seen. For this algorithm a general initialization of the belief distribution
bel(y0) is with:

µ0 =

x0

0
...
0

 , Σ0 =

Σ̃0 0 · · · 0
0 ∞ · · · 0
...

...
. . .

...
0 0 · · · ∞

 ,
where:

x0 =

0
...
0

 , Σ̃0 =

0 · · · 0
...

. . .
...

0 · · · 0

 ,
3

Data: µt−1,Σt−1,ut, zt, ct
Result: µt,Σt

µ̄t = g(ut,µt−1)
Σ̄t = GtΣt−1G

T
t +Rt

foreach zit do
j = cit
if landmark j never seen before then

Initialize

[
µ̄j,x
µ̄j,y

]
as expected position based on zit

end

Sit = Hj
t Σ̄t[H

j
t]
T +Qt

Ki
t = Σ̄t[H

j
t]
T [Sit]

−1

µ̄t = µ̄t +Ki
t(z

i
t − h(µ̄t, j))

Σ̄t = (I −Ki
tH

j
t)Σ̄t

end
µt = µ̄t
Σt = Σ̄t

return µt,Σt
Algorithm 1: Extended Kalman Filter Online SLAM Algorithm

and x0 and Σ̃ are the initial robot state and associated covariance (which is set to zero).
Since the reference frame for the map can be defined arbitrarily, this initialization is used to
say that the initial robot pose is known to be at the origin with certainty (and the map is
built with respect to that origin). The covariance of the map positions is set to infinity to
reflect that there is initially no knowledge of their position.

18.2 EKF SLAM with Unknown Correspondences

Performing EKF SLAM when the correspondences between measurements and landmarks
are unknown poses a more challenging problem. In the EKF localization case (when the
map was known), a maximum likelihood method was used to determine correspondence.
A similar approach is taken for EKF SLAM, which uses a maximum likelihood approach
based on the estimated landmark positions. The main difference is that now a mechanism
for hypothesizing that a new landmark has been found is also required. The EKF SLAM
with unknown correspondences algorithm is given in Algorithm 2.

As can be seen there are a couple differences between Algorithm 1 and Algorithm 2.
First, the measurements zik are used to hypothesize the position of a new landmark. The
Mahalanobis distance dikt is then computed for all currently tracked landmarks, and the
hypothesized landmark is added if the distance exceeds a threshold α (i.e. dikt > α for all
k = 1, . . . , Nt).

While this EKF-based algorithm can be used to solve the online SLAM problem without
correspondences, it is not necessarily the most robust approach. In particular, extraneous

4

Data: µt−1,Σt−1,ut, zt, Nt−1

Result: µt,Σt

Nt = Nt−1

µ̄t = g(ut,µt−1)
Σ̄t = GtΣt−1G

T
t +Rt

foreach zit do

Hypothesize position

[
µ̄Nt+1,x

µ̄Nt+1,y

]
from zit

foreach k = 1 to Nt + 1 do
ẑkt = h(µ̄t, k)
Skt = Hk

t Σ̄t[H
k
t]T +Qt

dikt = (zit − ẑkt)T [Skt]−1(zit − ẑkt)
end

d
i(Nt+1)
t = α
j = arg mink dikt
Nt = max{Nt, j}
Ki
t = Σ̄t[H

j
t]
T [Sjt]

−1

µ̄t = µ̄t +Ki
t(z

i
t − ẑ

j
t)

Σ̄t = (I −Ki
tH

j
t)Σ̄t

end
µt = µ̄t
Σt = Σ̄t

return µt,Σt
Algorithm 2: EKF Online SLAM Algorithm, Unknown Correspondences

measurements can result in the creation of fake landmarks, which will then propagate forward
to future steps and cannot be corrected! There are several techniques to mitigate these
issues, such as using outlier rejection schemes or strategies to enhance the distinctiveness
of landmarks (which may require prior knowledge or assumptions). Another important
disadvantage of EKF SLAM is that its computational complexity is quadratic with the
number of landmarks N , but generally a large number of landmarks is required for good
localization accuracy!

Example 18.1 (Differential Drive Robot with Range and Bearing Measurements). Consider
a differential drive robot with state x = [x, y, θ]T , and suppose a sensor is available on
the robot which measures the range r and bearing φ of landmarks mj ∈ m relative to
the robot’s local coordinate frame. Additionally, multiple measurements corresponding to
different features can be collected at each time step:

zt = {[r1
t , φ

1
t]
T , [r2

t , φ
2
t]
T , . . . },

where each measurement zit contains the range rit and bearing φit.

5

For the SLAM problem, the augmented state yt is defined as:

yt =

xt
m1

...
mN

 =
[
x y θ m1,x m1,y . . . mN,x mN,y

]T
.

Assuming the correspondences are known, the measurement model for the range and
bearing is:

h(yt, j) =

[√
(mj,x − x)2 + (mj,y − y)2

atan2(mj,y − y,mj,x − x)− θ

]
. (2)

The measurement Jacobian Hj
t corresponding to a measurement from landmark j is then

given by:

Hj
t =

[
− µ̄j,x−µ̄t,x√

qt,j
− µ̄j,y−µ̄t,y√

qt,j
0 0 . . . 0

µ̄j,x−µ̄t,x√
qt,j

µ̄j,y−µ̄t,y√
qt,j

0 . . .
µ̄j,y−µ̄t,y

qt,j
− µ̄j,x−µ̄t,x

qt,j
−1 0 . . . 0 − µ̄j,y−µ̄t,y

qt,j

µ̄j,x−µ̄t,x
qt,j

0 . . .

]
, (3)

where:
qt,j := (µ̄j,x − µ̄t,x)2 + (µ̄j,y − µ̄t,y)2,

and µ̄j,x and µ̄j,y are the estimate of the x and y coordinates of landmark mj from µ̄t.
With both a range and bearing measurement, the expected position of landmark mj is

given by: [
µ̄j,x
µ̄j,y

]
=

[
µ̄t,x
µ̄j,y

]
+

[
ritcos(φit + µ̄t,θ)
ritsin(φit + µ̄t,θ)

]
.

This can be used in the known-correspondence EKF SLAM algorithm (Algorithm 1) to
initialize the landmark position and can be used in the unknown-correspondence case (Al-
gorithm 2) to hypothesize the position of new landmarks.

18.3 Particle SLAM Algorithm

Another approach to the robot SLAM problem is to leverage the non-parametric particle
filter. In fact, particle SLAM can be used to solve the full SLAM problem, unlike EKF
SLAM which only solves the online SLAM problem. Specifically, the full SLAM problem
is to estimate the posterior distribution p(x1:t,m | z1:t,u1:t), which includes the full robot
path x1:t up to time t and the map m. Similar to the EKF SLAM case, the robot state x1:t

and map feature positions m are combined into an augmented state vector y1:t as in (1).
A näıve implementation of the particle filter in the context of full SLAM would be

computationally intractable, since the number of particles required to belief distribution
would be extremely large. However, the key insight that makes this approach tractable is
that the posterior over the map elements is conditionally independent given the true path of
the robot. Therefore the mapping component to the problem can be split up into separate

6

problems, corresponding to each feature in the map! Splitting the problem in this way makes
the overall problem much easier to solve.

Overall, particle filter SLAM approaches can be used with any noise distribution and
can express multimodal beliefs since they are non-parametric. Additionally, in practice they
can be relatively easy to implement and can also be more robust to data association errors.
Their main disadvantages are that they typically do not scale well to large scale problems
(too many particles are needed), and that without enough particles convergence may not
occur.

18.3.1 Factoring the Posterior

The key insight of particle SLAM that makes it a computationally tractable algorithm is
that the posterior p(y1:t | z1:t,u1:t, c1:t) can be factored as:

p(y1:t | z1:t,u1:t, c1:t) = p(x1:t | z1:t,u1:t, c1:t)
N∏
n=1

p(mn | x1:t, z1:t, c1:t), (4)

where mn is the n-th feature in the map m, the term p(x1:t | z1:t,u1:t, c1:t) is referred
to as the path posterior, and the terms p(mn | x1:t, z1:t, c1:t) are referred to as the feature
posteriors.

This factorization can be derived by first using Bayes’ rule

p(y1:t | z1:t,u1:t, c1:t) = p(x1:t | z1:t,u1:t, c1:t)p(m | x1:t, z1:t,u1:t, c1:t),

and then noting that since the feature posterior is conditioned on x1:t, the dependence on
u1:t is redundant:

p(y1:t | z1:t,u1:t, c1:t) = p(x1:t | z1:t,u1:t, c1:t)p(m | x1:t, z1:t, c1:t).

Now the feature posterior p(m | x1:t, z1:t, c1:t) can be explored in more detail. In partic-
ular two cases can be considered for each landmark mn: the case when the measurement at
time t is not associated with n and the case when it is:

p(mn | x1:t, z1:t, c1:t) =

{
p(mn | x1:t−1, z1:t−1, c1:t−1), ct 6= n,
p(zt|mn,xt,ct)p(mn|x1:t−1,z1:t−1,c1:t−1)

p(zt|x1:t,z1:t−1,c1:t)
, ct = n,

where in the second case Bayes’ rule was applied. It is now possible to show the result (4)
by induction. First, suppose that:

p(m | x1:t−1, z1:t−1, c1:t−1) =
N∏
n=1

p(mn | x1:t−1, z1:t−1, c1:t−1).

Then, using Bayes’ rule at time t:

p(m | x1:t, z1:t, c1:t) =
p(zt |m,xt, ct)p(m | x1:t−1, z1:t−1, c1:t−1)

p(zt | x1:t, z1:t−1, c1:t)
,

=
p(zt |m,xt, ct)

p(zt | x1:t, z1:t−1, c1:t)

N∏
n=1

p(mn | x1:t−1, z1:t−1, c1:t−1).

7

Next, applying the analysis above for the cases where ct 6= n and ct = n:

p(m | x1:t, z1:t, c1:t) = p(mct | x1:t, z1:t, c1:t)
∏
n6=ct

p(mn | x1:t, z1:t, c1:t),

=
N∏
n=1

p(mn | x1:t, z1:t, c1:t).

18.3.2 Fast SLAM with Known Correspondences

The particle SLAM algorithm referred to as Fast SLAM uses the factorization of the posterior
p(y1:t | z1:t,u1:t, c1:t) in (4) to decompose the full SLAM problem into more manageable sub-
problems. Specifically, the path posterior p(x1:t | z1:t,u1:t, c1:t) is estimated using a particle
filter and the feature posteriors p(mn | x1:t, z1:t, c1:t) are estimated by EKFs conditioned on
the robot path x1:t (i.e. there is a separate EKF for each feature mn).

Accordingly, the set of particles is given as:

Yt := {Y [1]
t , Y

[2]
t , ..., Y

[M]
t },

where the k-th particle is defined by:

Y
[k]
t = {x[k]

t ,µ
[k]
1,t,Σ

[k]
1,t, . . . ,µ

[k]
N,t,Σ

[k]
N,t},

where x
[k]
t is a hypothesis of the robot state at time t, (µ

[k]
n,t,Σ

[k]
n,t) are the mean and covariance

of the EKF associated with landmark mn, and where it is assumed that there are N total
landmarks in the map m. As can be seen, with a total of M particles there are a total of
NM EKFs! To summarize, the Fast SLAM algorithm is a particle based algorithm where
each particle keeps track of a hypothesis of the robot state as well as the location (and
uncertainty) of each landmark in the map! The algorithm is defined in Algorithm 3.

Note the blending of the classical particle filter algorithm with the EKF localization
algorithm. In particular, the particle filter steps can be seen with the sampling of the new
pose xt from the state transition model and the use of the weights w for resampling a new
set of particles (i.e. the measurement correction step). The EKF portions of the algorithm
correspond to how the features are tracked, and in particular how the mean and covariance
of the Gaussian corresponding to each landmark are updated based on new measurements.

References

[TBF05] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic robotics. MIT
press, 2005.

8

Data: Yt−1,ut, zt, ct
Result: Yt
for k = 1 to M do

Sample x
[k]
t ∼ p(xt | ut,x[k]

t−1)
j = ct
if landmark j never seen before then

Initialize feature: (µ
[k]
j,t−1,Σ

[k]
j,t−1)

else

ẑ[k] = h(µ
[k]
j,t−1,x

[k]
t)

S = HjΣ
[k]
j,t−1[Hj]T +Qt

K = Σ
[k]
j,t−1[Hj]T [S]−1

µ
[k]
j,t = µ

[k]
j,t−1 +K(zt − ẑ[k])

Σ
[k]
j,t = (I −KHj)Σ

[k]
j,t−1

w[k] = det(2πS)−1/2exp
(
− 1

2
(zt − ẑ[k])Q−1(zt − ẑ[k])

)
end
for n ∈ {1, . . . , N}, n 6= ct do

µ
[k]
n,t = µ

[k]
n,t−1

Σ
[k]
n,t = Σ

[k]
n,t−1

end

end
Yt = ∅
for m = 1 to M do

Draw k with probability ∝ w
[k]
t

Yt = Yt ∪ (x̄
[k]
t ,µ

[k]
1,t,Σ

[k]
1,t, . . . ,µ

[k]
N,t,Σ

[k]
N,t)

end
return Yt

Algorithm 3: Fast SLAM Algorithm

9

