
AA274A: Principles of Robot Autonomy I
Course Notes

The last few chapters introduced some of the most widely used algorithms based on Bayes’
filter for probabilistic robot localization and state estimation. However these fundamental
algorithms still need further enhancements before application to many robot localization
tasks, since in their standard form they don’t incorporate a notion of a local map. For
example, a particle filter could be applied in its original form to a problem of global local-
ization based on GNSS measurements, but localizing based on range measurements requires
knowledge about what object is being ranged, and where that object is with respect to the
local environment (i.e. the map). In this chapter a more specific definition of mobile robot
localization is considered, namely the problem of determining the pose of a robot relative to
a given map of the environment.

17 Robot Localization

Localization with respect to a map can be interpreted as a problem of coordinate trans-
formation. Maps are described in a global coordinate system, which is independent of a
robot’s pose. Localization can then be viewed as the process of establishing a correspon-
dence between the map coordinate system and the robot’s local coordinate system. Knowing
this coordinate transformation then enables the robot to express the location of objects of
interest within its own coordinate frame (a necessary prerequisite for robot autonomy).

In 2D problems, knowing the pose xt = (x, y, θ)T of a robot is sufficient to establish this
correspondence, and an ideal sensor would directly be able to measure this pose. However
in practice no such sensor exists, and therefore indirect (often noisy) measurements zt of the
pose are used. Since it is almost impossible to be able to reliably estimate xt from a single
measurement zt, localization algorithm typically integrate additional data over time to build
reliable localization estimates. For example, consider a robot located inside a building where
many corridors look alike. In this case a single sensor measurement (e.g. a range scan) is
usually insufficient to disambiguate the identity of the corridor from the others.

In this chapter it will be seen how this map-based localization problem can be cast in
the Bayesian filtering framework, such that the algorithms from previous chapters can be
leveraged.
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17.1 A Taxonomy of Localization Problems

To understand the broad scope of challenges related to robot localization, it is useful to de-
velop a brief taxonomy of localization problems. This categorization will divide localization
problems along a number of important dimensions pertaining to the nature of the environ-
ment (e.g. static versus dynamic), the initial knowledge that a robot may possess, and how
information about the environment is gathered (e.g. passive or active, with one robot or
collaboratively with several robots).

17.1.1 Local vs. Global

Localization problems can be characterized by the type of knowledge that is available initially,
which has a significant impact on what type of localization algorithm is most appropriate
for the problem.

• Position tracking problems assume that the initial pose of the robot is known. In these
types of problems only incremental updates are required (i.e. the localization error is
generally always small), and therefore unimodal Gaussian filters (e.g. Kalman filters)
can be efficiently applied.

• Global localization problems assume that the initial pose of the robot is unknown. In
these scenarios the use of a unimodal parametric belief distribution cannot adequately
capture the global uncertainty. Therefore it is more appropriate to use non-parametric,
multi-hypothesis filters, such as the particle filter.

• The kidnapped robot problem is a variant of the global localization problem (i.e. un-
known initial pose) where the robot can get “kidnapped” and “teleported” to some
other location. This problem is more difficult than the global localization problem
since the localization algorithm needs to have an awareness that sudden drastic to the
robot’s pose are possible. While robots are typically not “kidnapped” in practice, the
consideration of this type of problem is useful for ensuring the localization algorithm is
robust, since the ability to recover from failure is essential for truly autonomous robots.
Similar to the global localization problem, these problems are often best addressed us-
ing non-parametric, multi-hypothesis filters.

17.1.2 Static vs. Dynamic

Environmental changes are another important consideration in mobile robot localization,
specifically whether they are static or dynamic.

• In static environments the robot is the only object that moves. Static environments
are generally much easier to perform localization in.

• Dynamic environments possess objects other than the robot whose locations or config-
urations change over time. This problem is usually addressed by augmenting the state
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vector to include the movement of dynamic entities, or by filtering the sensor data to
remove the effects of environment dynamics.

17.1.3 Passive vs. Active

Information collected via measurements is crucial for robot localization. Therefore it is
reasonable to consider localization problems where the robot can explicitly choose its actions
to gather more (or more specific) information from the environment.

• Passive localization problems assume that the robot’s motion is unrelated to its local-
ization process.

• Active localization problems consider the ability of the robot to choose its actions (at
least partially) to improve its understanding of the environment. For example, a robot
in the corner of a room might choose to reorient itself to face the rest of the room, so it
can collect environmental information as it moves along the wall. Hybrid approaches
are also possible, since it may be inefficient to use active localization all of the time.

17.1.4 Single Robot vs. Multi-Robot

It is of course also possible to consider problems where several robots all gather independent
information and then share that information with each other.

• Single-robot localization problems are the most commonly studied and utilized ap-
proach, and are often simpler because all data is collected on a single platform.

• Multi-robot localization problems consider teams of robots that share information in
such a way that one robot’s belief can be used to influence another robot’s belief if the
relative location between robots is known.

17.2 Robot Localization via Bayesian Filtering

The parametric (e.g. EKF) and non-parametric (e.g. particle) filters from the previous
chapters are all variations of the Bayes filter. In particular they rely on a Markov process
assumption and the identification of probabilistic measurement models. In this section it
is shown how map-based robot localization can be cast into this framework, such that the
previously discussed algorithms can be applied.

Similar to the general filtering context from the previous chapters, at time t the state is
denoted by xt, the control input is denoted by ut, and the measurements are denoted by zt.
For example, a differential drive robot equipped with a laser range-finder (returning a set of
range measurements ri and bearings φi), the state, control, and measurements would be:

xt =

xy
θ

 , ut =

[
v
ω

]
, zt =

r1

φ1
...

 . (1)
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However, the critical new component is the concept of a map (denoted as m), which is
a list of objects in the environment along with their properties:

m = {m1,m2, . . . ,mN}, (2)

where mi represents the properties of a specific object. Generally there are two types of
maps that will be considered, location-based maps and feature-based maps, which typically
have differences in both computational efficiency and expressiveness.

For location-based maps, the index i associated with object mi corresponds to a specific
location (i.e. mi are volumetric objects). For example, objects mi in a location-based map
might represent cells in a cell decomposition or grid representation of a map (see Figure 1).
One potential disadvantage of the cell-based maps is that their resolution is dependent on

Figure 1: Two examples of location-based maps, both represent the map as a set of volumetric
objects (i.e. cells in these cases).

the size of the cells, but their advantage is that they can explicitly encode information about
presence (or absence) of objects in specific locations.

For feature-based maps, an index i is a feature index, and mi contains information about
the properties of that feature, including its Cartesian location. These types of maps can
typically be thought of as a collection of landmarks. Figure 2 gives two examples of feature-
based maps, one which is represented by a set of lines, and another which is represented
by nodes and edges like a graph (i.e. a topological map). Feature-based maps can be more
finely tuned to specific environments, for example the line-based map might make sense
to use in highly structured environments such as buildings. While feature-based maps can
be computationally efficient, their main disadvantage is that they typically do not capture
spatial information about all potential obstacles.

17.2.1 State Transition Model

In the previous chapters on Bayesian filtering the probabilistic state transition model p(xt |
ut,xt−1) describes the posterior distribution over the states that the robot could transition
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Figure 2: Two examples of feature-based maps.

to when executing control ut from xt−1. However in robot localization problems it might
be important to take into account how the map m could affect the state transition since in
general:

p(xt | ut,xt−1) 6= p(xt | ut,xt−1,m).

For example, p(xt | ut,xt−1) cannot account for the fact that a robot cannot move through
walls since it doesn’t know that walls exist!

However, a common approximation is to make the assumption that:

p(xt | ut,xt−1,m) ≈ η
p(xt | ut,xt−1)p(xt |m)

p(xt)
, (3)

where η is a normalization constant. This approximation can be derived from Bayes’ rule by
assuming that p(m | xt,xt−1,ut) ≈ p(m | xt) (which is a tight approximation under high
update rates). More specifically:

p(xt | ut,xt−1,m) =
p(m|xt,xt−1,ut)p(xt | xt−1,ut)

p(m | xt−1,ut)
,

= η′p(m|xt,xt−1,ut)p(xt | xt−1,ut),

≈ η′p(m|xt)p(xt | xt−1,ut),

= η
p(xt | ut,xt−1)p(xt |m)

p(xt)
,

where η′ and η are normalization constants (such that the total probability density integrates
to one).

In this approximation the term p(xt |m) is the state probability conditioned on the map
which can be thought of as describing the “consistency” of state with respect to the map.
The approximation (3) can therefore be viewed as making a probabilistic guess using the
original state transition model (without map knowledge), and then using the consistency
term p(xt |m) to check the plausibility of the new state xt given the map.
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17.2.2 Measurement Model

The probabilistic measurement model model p(zt | xt) from previous chapters also needs to
be modified to take map information into account. This new measurement model can simply
be expressed as p(zt | xt,m) (i.e. measurement is also conditioned on the map). This is
obviously important because the local measurements can have significant influence from the
environment. For example a range measurement is dependent on what object is currently in
the line of sight.

Additionally, since the suite of sensors on a robot may generate more than one measure-
ment when queried, it is also common to make another measurement model assumption for
simplicity. Suppose K measurements are taken at time t, such that:

zt =

z
1
t
...
zKt

 .
Then it can often be assumed that each of the K measurements are conditionally indepen-
dent from each other (i.e. when conditioned on xt and m the probability of measuring
zkt is independent from the other measurements). With this assumption the probabilistic
measurement model can be expressed as:

p(zt | xt,m) =
K∏
k=1

p(zkt | xt,m). (4)

17.3 Markov Localization

With the probabilistic state transition and measurement models that include the map, the
Bayes’ filter can be directly modified as shown in Algorithm 1. As can be seen, this algorithm

Data: bel(xt−1),ut, zt,m
Result: bel(xt)
foreach xt do

bel(xt) =
∫
p(xt | ut,xt−1,m)bel(xt−1)dxt−1

bel(xt) = ηp(zt | xt,m)bel(xt)
end
return bel(xt)

Algorithm 1: Markov Localization Algorithm

is conceptually identical to the Bayes’ filter except for the inclusion of the model m. This
algorithm is referred to as the Markov localization algorithm, and the localization problem
it is trying to solve is generally referred to as simply Markov localization1.

1Recall the use of the Markov property assumption in the derivation of the Bayes’ filter.
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The Markov localization algorithm can be used to address global localization, position
tracking, and kidnapped robot problems, but generally some implementation details might
be different. The choice for the initial (prior) belief distribution bel(x0) is one such parameter
that may be different depending on the type of localization problem.

Specifically, since the initial belief encodes any prior knowledge about the robot pose, the
best choice of distribution depends on what (if any) knowledge is available. For example,
in the position tracking problem it is assumed that an initial pose of the robot is known.
Therefore choosing a (unimodal) Gaussian distribution bel(x0) ∼ N (x̄0,Σ0) with a small
covariance might be a good choice. Alternatively, for a global localization problem the initial
pose is not known. In this case an appropriate choice for the initial belief would be a uniform
distribution bel(x0) = 1/|X| over all possible states x.

Similarly to the original Bayes’ filter from previous chapters, the Markov localization algo-
rithm 1 is generally not possible to implement in a computationally tractable way. However,
practical implementations can still be developed by again leveraging some sort of structure
to the belief distribution bel(xt) (e.g. through Gaussian or particle representations). Two
commonly used implementations based on specific structured beliefs will now be discussed:
extended Kalman filter localization and Monte Carlo localization.

17.4 Extended Kalman Filter (EKF) Localization

The extended Kalman filter (EKF) localization algorithm is essentially equivalent to the
EKF algorithm presented in previous chapters, except that it also takes the map m into
account. In particular, it still makes a Guassian belief assumption, bel(xt) ∼ N (µt,Σt), to
add structure to the filtering problem. As a brief review, the assumed state transition model
is given by:

xt = g(ut,xt−1) + εt,

where εt ∼ N (0,Rt) is Gaussian zero-mean noise. The Jacobian Gt is again defined by
Gt = ∇xg(ut,µt−1), where µt−1 is the expected value of the previous belief distribution
bel(xt−1).

The main difference in EKF localization is the assumption that a feature-based map is
available, consisting of point landmarks given by:

m = {m1,m2, . . . ,mN}, mj = (mj,x,mj,y),

where N is the total number of landmarks, and each landmark mj encapsulates the location
(mj,x,mj,y) of the landmark in the global coordinate frame. Measurements zt associated
with these point landmarks at a time t are denoted by:

zt = {z1
t , z

2
t , . . . },

where zit is associated with a particular landmark and is assumed to be generated by the
measurement model:

zit = h(xt, j,m) + δt,
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where δt ∼ N (0,Qt) is Gaussian zero-mean noise and j is the index of the map feature
mj ∈m that measurement i is associated with.

One fundamental problem that now needs to be addressed is the data association prob-
lem, which arises due to uncertainty in which measurements are associated with which land-
mark. To begin addressing this problem, the correspondences are modeled through a variable
cit ∈ {1, . . . , N+1}, which take on the values cit = j if measurement i corresponds to landmark
j, and cit = N+1 if measurement i has no corresponding landmark. Then, given a correspon-
dence cit of measurement i (associated with a specific landmark), the Jacobian H i

t used in the
EKF measurement correction step can be determined. Specifically, for the i-th measurement

the Jacobian of the new measurement model can be computed by H
cit
t = ∇xh(µ̄t, c

i
t,m),

where µ̄t is the predicted mean (that results from the EKF prediction step).

17.4.1 EKF Localization with Known Correspondences

In practice the correspondences between measurements zit and landmarks mj are generally
unknown. However, it is useful from a pedagogical standpoint to first consider the case where
these correspondences ct = [c1

t , . . . ]
T are assumed to be known.

In the EKF localization algorithm given in Algorithm 2, the main difference from the
original EKF filter algorithm is that multiple measurements are processed at the same time.
Crucially, this is accomplished in a computationally efficient way by exploiting the con-
ditional independence assumption (4) for the measurements. In fact, by exploiting this
assumption and some special properties of Gaussians, the multi-measurement update can be
implemented by just looping over each measurement individually and applying the standard
EKF correction.

Data: µt−1,Σt−1,ut, zt, ct,m
Result: µt,Σt

µ̄t = g(ut,µt−1)
Σ̄t = GtΣt−1G

T
t +Rt

foreach zit do
j = cit
Sit = Hj

t Σ̄t[H
j
t ]
T +Qt

Ki
t = Σ̄t[H

j
t ]
T [Sit ]

−1

µ̄t = µ̄t +Ki
t(z

i
t − h(µ̄t, j,m))

Σ̄t = (I −Ki
tH

j
t )Σ̄t

end
µt = µ̄t
Σt = Σ̄t

return µt,Σt
Algorithm 2: Extended Kalman Filter Localization Algorithm
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17.4.2 EKF Localization with Unknown Correspondences

For EKF localization with unknown correspondences, the correspondence variables must also
be estimated! The simplest way to determine the correspondences online is to use maximum
likelihood estimation, in which the most likely value of the correspondences ct is determined
by maximizing the data likelihood:

ĉt = arg max
ct

p(zt | c1:t,m, z1:t−1,u1:t)

In other words, the set of correspondence variables is chosen to maximize the probability
of getting the current measurement given the history of correspondence variables, the map,
the history of measurements, and the history of controls. By marginalizing over the current
pose xt this distribution can be written as:

p(zt | c1:t,m, z1:t−1,u1:t) =

∫
p(zt | c1:t,xt,m, z1:t−1,u1:t)p(xt | c1:t,m, z1:t−1,u1:t)dxt,

=

∫
p(zt | ct,xt,m)bel(xt)dxt.

Note that the term p(zt | c1:t,xt,m) is essentially the assumed measurement model given
known correspondences. Then, by again leveraging the conditional independence assumption
for the measurements zit from (4), this can be written as:

p(zt | c1:t,m, z1:t−1,u1:t) =

∫ ∏
i

p(zit | cit,xt,m)bel(xt)dxt.

Importantly, each decision variable cit in the maximization of this quantity shows up in sepa-
rate terms of the product! Therefore it is possible to maximize each parameter independently
by solving the optimization problems:

ĉit = arg max
cit

∫
p(zit | cit,xt,m)bel(xt)dxt.

This problem can be solved quite efficiently since it is assumed that the measurement models
and belief distributions are Gaussian2. In particular, the probability distribution resulting
from the integral is a Gaussian with mean and covariance:∫

p(zit | cit,xt,m)bel(xt)dxt ∼ N (h(µ̄t, c
i
t,m), H

cit
t Σ̄t[H

cit
t ]T +Qt).

The maximum likelihood optimization problem can therefore be expressed as:

ĉit = arg max
cit

N (zit | ẑ
cit
t , S

cit
t ),

2Similar to the previous chapters, in this case the product of terms inside the integral will be Gaussian
since both terms are Gaussian.

9



where ẑjt = h(µ̄t, j,m) and Sjt = Hj
t Σ̄t[H

j
t ]
T + Qt. To solve this maximization problem,

recall the definition of the Gaussian distribution:

N (zit | ẑ
j
t , S

j
t ) = η exp

(
− 1

2
(zit − ẑ

j
t )
T [Sjt ]

−1(zit − ẑ
j
t )
)
,

where η is a normalization constant. Since the exponential function is monotonically in-
creasing and since η is a positive constant, the maximum likelihood estimation problem can
be equivalently expressed as:

ĉit = arg min
cit

d
i,cit
t , (5)

where
dijt = (zit − ẑ

j
t )
T [Sjt ]

−1(zit − ẑ
j
t ), (6)

is referred to as the Mahalanobis distance.
The EKF localization algorithm with unknown correspondences is very similar to Algo-

rithm 2, except with the addition of this maximum likelihood estimation step. This new
algorithm is given in Algorithm 3.

Data: µt−1,Σt−1,ut, zt,m
Result: µt,Σt

µ̄t = g(ut,µt−1)
Σ̄t = GtΣt−1G

T
t +Rt

foreach zit do
foreach landmark k in the map do
ẑkt = h(µ̄t, k,m)
Skt = Hk

t Σ̄t[H
k
t ]T +Qt

end
j = arg mink (zit − ẑkt )T [Skt ]−1(zit − ẑkt )
Ki
t = Σ̄t[H

j
t ]
T [Sjt ]

−1

µ̄t = µ̄t +Ki
t(z

i
t − ẑ

j
t )

Σ̄t = (I −Ki
tH

j
t )Σ̄t

end
µt = µ̄t
Σt = Σ̄t

return µt,Σt
Algorithm 3: EKF Localization Algorithm, Unknown Correspondences

One of the disadvantages of using the maximum likelihood estimation is that it can be
brittle with respect to outliers and in cases where there are equally likely hypothesis for the
correspondence. An alternative approach to estimating correspondences that is more robust
to outliers is to use a validation gate. In this approach the Mahalanobis smallest distance
dijt must also pass a thresholding test:

(zit − ẑ
j
t )
T [Sjt ]

−1(zit − ẑ
j
t ) ≤ γ,
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in order for a correspondence to be created.

Example 17.1 (Differential Drive Robot with Range and Bearing Measurements). Consider
a differential drive robot with state x = [x, y, θ]T , and suppose a sensor is available on
the robot which measures the range r and bearing φ of landmarks mj ∈ m relative to
the robot’s local coordinate frame. Additionally, multiple measurements corresponding to
different features can be collected at each time step:

zt = {[r1
t , φ

1
t ]
T , [r2

t , φ
2
t ]
T , . . . },

where each measurement zit contains the range rit and bearing φit.
Assuming the correspondences are known, the measurement model for the range and

bearing is:

h(xt, j,m) =

[ √
(mj,x − x)2 + (mj,y − y)2

atan2(mj,y − y,mj,x − x)− θ

]
. (7)

The measurement Jacobian Hj
t corresponding to a measurement from landmark j is then

given by:

Hj
t =

[
− mj,x−µ̄t,x√

(mj,x−µ̄t,x)2+(mj,y−µ̄t,y)2
− mj,y−µ̄t,y√

(mj,x−µ̄t,x)2+(mj,y−µ̄t,y)2
0

mj,y−µ̄t,y
(mj,x−µ̄t,x)2+(mj,y−µ̄t,y)2

− mj,x−µ̄t,x
(mj,x−µ̄t,x)2+(mj,y−µ̄t,y)2

−1

]
. (8)

It is also common to assume that the covariance of the measurement noise is given by:

Qt =

[
σ2
r 0

0 σ2
φ

]
,

where σr is the standard deviation of the range measurement noise and σφ is the standard
deviation of the bearing measurement noise. This diagonal covariance matrix is typically
used since these two measurements can be assumed to be uncorrelated.

17.5 Monte Carlo Localization (MCL)

Another approach to Markov localization is the Monte Carlo localization (MCL) algorithm.
This algorithm leverages the non-parametric particle filter algorithm from the previous chap-
ter, and is therefore much better suited to solving global localization problems (unlike EKF
localization which only solves position tracking problems). MCL can also be used to solve the
kidnapped robot problem through some small modifications, such as injecting new random
particles at each step to ensure that a “particle collapse” problem does not occur.

As a brief review, the particle filter represents the belief bel(xt) by a set of M particles:

Xt := {x[1]
t ,x

[2]
t , ...,x

[M ]
t },

where each particle x
[m]
t represents a hypothesis about the true state xt. At each step of the

algorithm the state transition model is used to propagate forward the particles, and then the
measurement model is used to resample particles based on the measurement likelihood. This
algorithm is shown in Algorithm 4, and is nearly identical to the particle filter algorithm
except that the map m is used in the probabilistic state transition and measurement models.
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Data: Xt−1,ut, zt,m
Result: Xt
X̄t = Xt = ∅
for m = 1 to M do

Sample x̄
[m]
t ∼ p(xt | ut,x[m]

t−1,m)

w
[m]
t = p(zt | x̄[m]

t ,m)

X̄t = X̄t ∪
(
x̄

[m]
t , w

[m]
t

)
end
for m = 1 to M do

Draw i with probability ∝ w
[i]
t

Add x̄
[i]
t to Xt

end
return Xt

Algorithm 4: Monte Carlo Localization Algorithm
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