
AA274A: Principles of Robot Autonomy I
Course Notes

Previous chapters introduced several algorithms for robot localization and state estima-
tion that are based on a probabilistic framework. In particular, the Bayes filter was first
introduced as a fundamental approach to the problem, which uses a probabilistic state transi-
tion model and a measurement model to recursively update a belief distribution over possible
states. A set tractable implementations of the Bayes filter that model the belief distribu-
tion in a parametric way, for example using Gaussian distributions, was then presented (in
particular the Kalman and extended Kalman filters). These filters leverage the structure of
the parametric belief distribution to provide a computationally efficient approach to dealing
with continuous state spaces (which have an infinite number of states). For example the
Gaussian distribution represents a continuous distribution through a finite set of parame-
ters: the mean and covariance. However there are also other implementations of Bayes filter
that can be efficiently used in continuous state spaces that are non-parametric.

16 Nonparametric Filters

In contrast to parametric filters, non-parametric filters do not make assumptions on the
structure of the belief distribution. This can be a desirable property for applications in
robotics where rigid structures in the belief distribution may result in poor performance. A
classic example is that the Gaussian distributions used in the Kalman filter and EKF are
unimodal, which cannot express the possibility that two distinct “high probability” states
might exist at the same time. Non-parametric filters on the other hand generally represent
the belief distribution in an unstructured way, for example through a finite number of samples
drawn from the distribution, which allows for more expressive distributions. This chapter
introduces two main approaches for non-parametric filtering: the histogram filter and the
particle filter.

16.1 Histogram Filter

The histogram filter is essentially a modification of the discrete Bayes filter presented earlier
to work in continuous state spaces. In particular, the continuous state space is decomposed
into a finite number of regions and the belief is represented over the discretized space by
collecting the finite number of probabilities of the state being in each discretized region.
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In particular for the random state variable Xt, the continuous state space dom(Xt) is
decomposed into a finite set of regions (often called bins in the context of histogram filters):

dom(Xt) = x1,t ∪ x2,t ∪ ... ∪ xK,t, (1)

where xk,t is the k-th “bin”. For example, if the one-dimensional random variable X could
take on values in the interval [a, b] then one possible decomposition would be to split the
interval into a finite number of sub-intervals with equal width. The belief distribution is
then defined in non-parametric way by simply specifying a probability pk,t to each bin xk,t.
A probability density function can then be defined in a piecewise manner:

p(xt) =
pk,t
|xk,t|

, xt ∈ xk,t, (2)

where |xk,t| denotes the “area” or “volume” of the bin. This definition implies that the
probability that the random variable Xt takes on any value in the bin xk,t is equal to pk,t.

The prediction and measurement update steps of the Bayes filter are then accomplished by
also discretizing the state transition and measurement models by computing a representative
“mean” state for each bin:

x̂k,t = |xk,t|−1

∫
xk,t

xtdxt. (3)

The state transition model p(xk,t | ut,xi,t−1) that defines the probability of transitioning
from one bin to another is then approximated in terms of the mean bin states by:

p(xk,t | ut,xi,t−1) ≈ η|xk,t|p(x̂k,t | ut, x̂i,t−1), (4)

where p(x̂k,t | ut, x̂i,t−1) is the original (non-discretized) state transition model evaluated at
the mean bin states x̂ and η is a normalization constant1.

The discretization of the measurement model is accomplished in a similar manner, with
the discretized model given by:

p(zt | xk,t) ≈ p(zt | x̂k,t). (5)

In other words, the measurement probability associated with a bin is approximated by the
measurement probability associated with the mean bin state x̂k,t.

After the discretization has been performed, the discrete Bayes filter algorithm from
before can be directly applied by iterating over each bin and updating the probability pk,t.

16.2 Particle Filter

The particle filter is another non-parametric filter that provides a computationally tractable
implementation of the Bayes filter for continuous state spaces. This filter represents the
belief distribution by a finite set of random samples called particles, which are denoted by:

Xt := {x[1]
t ,x

[2]
t , ...,x

[M ]
t }. (6)

1In the case that the bin areas |xk,t| are equal, these terms can be absorbed into the normalization
constant.
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Each particle x
[m]
t represents a hypothesis about the true state xt, and therefore regions of

the state space with more particles correspond to regions of high probability. Ideally, the
particles are distributed according to the current belief:

x
[m]
t ∼ p(xt | z1:t,u1:t) = bel(xt), (7)

but theoretically this only occurs as M → ∞. Instead the set of particles approximately
represents the belief distribution, and in practice around M ≈ 1000 samples tends to be
sufficient (but of course this depends on the application).

The particle filter updates the belief (via a prediction and measurement correction step)
by manipulating the prior set of particles Xt−1 to yield a new set of particles Xt. The

prediction step is implemented by considering each particle x
[m]
t−1 in the prior set Xt−1 and

sampling from the state transition model a new “predicted” sample x̄
[m]
t ∼ p(xt | ut,x

[m]
t−1).

An importance factor w
[m]
t is then defined for the predicted sample x̄

[m]
t based on how well

the observed measurement matches the prediction. Specifically, the importance factor is
computed as w

[m]
t = p(zt | x̄[m]

t ). The predicted particles x̄
[m]
t and their associated weights

w
[m]
t can then be collected in a new particle set X̄t, which represents the predicted belief

distribution bel(xt). The correction step is then accomplished by simply resampling (with
replacement) a new set of M particles from the predicted set X̄t with a probability propor-

tional to the weights w
[m]
t . This procedure performs the measurement correction by giving

preference in the new sample set to those predicted particles that showed higher correlation
to the measurement zt. The resampled points are then collected in a new set Xt that defines
the posterior belief distribution. This algorithm is also outlined in Algorithm 1 and a few
iterations of the algorithm for a simple robot localization problem are shown in Figure 1.

Data: Xt−1,ut, zt

Result: Xt

X̄t = Xt = ∅
for m = 1 to M do

Sample x̄
[m]
t ∼ p(xt | ut,x

[m]
t−1)

w
[m]
t = p(zt | x̄[m]

t )

X̄t = X̄t ∪
(
x̄
[m]
t , w

[m]
t

)
end
for m = 1 to M do

Draw i with probability ∝ w
[i]
t Add x̄

[i]
t to Xt

end
return Xt

Algorithm 1: Particle Filter Algorithm

Note that the concept of resampling in the correction step can be quite important for rea-
sons beyond just updating the belief for the measurement correction. In particular, without
the resampling step over time some of the particles would drift to regions of low probability
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and there would be fewer particles to represent the regions of high probability. The resam-
pling step can therefore be viewed as a probabilistic implementation of the Darwinian idea
of survival of the fittest: it refocuses the particle set to regions in state space with high pos-
terior probability. This helps from a computational efficiency standpoint because it reduces
the number of particles that are needed by focusing them on the regions of the state space
that matter (i.e. regions of high probability).
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Figure 1: Particle filter used for robot localization from [TBF05]: (a) Initial particles sampled
uniformly over entire state space, (b) same set of particles from (a) after importance weight-
ing with initial sensor measurement, (c) resampled particles from weighted distribution after
motion, (d) importance weighting of new particle set with new sensor measurement, and (e)
resampled particle set after further motion.
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