
AA274A: Principles of Robot Autonomy I
Course Notes

The previous chapter introduced a probabilistic framework that can be used to design
algorithms for robot localization and state estimation. The chapter concluded with the intro-
duction of the Bayes filter, which is a fundamental algorithm for maintaining and updating
a belief distribution (a probability distribution over possible states). While the Bayes filter
is generally intractable to implement in practice, it lays a mathematical foundation for the
development of algorithms that can exploit structure or other approximations to generate
tractable approaches. One such example is the discrete Bayes filter, which assumes that the
number of possible states is finite such that the belief distribution can be represented by sim-
ply storing the probability of each state individually. This type of distribution is referred to
as non-parametric since the belief distribution is not required to have a particular structure.

Alternatively, it is possible to develop tractable algorithms for probabilistic localization
and state estimation by leveraging parametric belief distributions. Parametric distribu-
tions are distributions that are fully specified by a fixed number of parameters, for example
Gaussian distributions are defined by the mean and covariance parameters. These paramet-
ric filters can generally be viewed as practical implementations of Bayes filter that exploit
structure for efficiency, and include the Kalman filter family of algorithms.

15 Parametric Filters

Parametric filters are a family of algorithms for robot localization and state estimation that
model the robot’s belief with parametric distributions. Therefore, as the robot’s state evolves
and new measurement information arrives, updating the belief distribution is accomplished
by simply updating the parameters that define the distribution. This can lead to practically
implementable algorithms since the number of parameters is generally not too large. For
example, a Gaussian distribution in one dimension only requires the specification of two
parameters: the mean and standard deviation. Yet with these two parameters a probability
distribution is defined over an infinite number of values! This is an example of how parametric
filters exploit structure for efficiency.
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15.1 Gaussian Distribution

The Gaussian distribution (also referred to as a normal distribution) is likely the most com-
monly used parametric distribution in many disciplines, including robotics. The probability
density function for a one-dimensional (univariate) Gaussian distribution is given by:

p(x) =
1√

2πσ2
e−

1
2

(x−µ)2

σ2 , (1)

where the parameters are the mean µ and standard deviation σ (the quantity σ2 is referred
to as the variance). A shorthand notation for saying that a random variable X is distributed
according to a Gaussian (normal) distribution is X ∼ N (µ, σ2). For the multi-dimensional
case, the multivariate Gaussian distribution is defined by the probability density function:

p(x) =
1√

det(2πΣ)
exp
(
− 1

2
(x− µ)TΣ−1(x− µ)

)
, (2)

where x ∈ Rn and the parameters are the mean µ ∈ Rn and the covariance matrix Σ ∈ Rn×n.
Again, a shorthand to say a random variable X is distributed according to the multivariate
Gaussian distribution is X ∼ N (µ,Σ). These distributions are represented graphically for
the univariate and bivariate case in Figure 1. These distributions exhibit several important

(a) Univariate Gaussian distribution.
(b) Level curves of a two-dimensional multivariate
Gaussian distribution.

Figure 1: Univariate and multivariate Gaussian distributions.

properties which make them particularly attractive for algorithm development:

1. The affine transformation of a Gaussian random variable is also a Gaussian random
variable. In particular, suppose the random variable X has a multivariate Gaussian
distribution with mean µ and covariance Σ. Then the random variable Y resulting
from an affine transformation:

Y = AX + b,

also has a multivariate Gaussian distribution with expected value Aµ+b and covariance
AΣAT . In other words, if X ∼ N (µ,Σ) then Y ∼ N (Aµ+ b, AΣAT ).
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2. The sum of two independent Gaussian random variables is also a Gaussian random
variable. In particular, suppose X1 and X2 have multivariate Gaussian distributions
with means µ1 and µ2 and covariances Σ1 and Σ2. Then the random variable Y given
by the sum:

Y = X1 +X2,

also has a multivariate Gaussian distribution with expected value µ1 + µ2 and co-
variance Σ1 + Σ2. In other words, if X1 ∼ N (µ1,Σ1) and X2 ∼ N (µ2,Σ2) then
Y ∼ N (µ1 + µ2,Σ1 + Σ2).

3. The product of two Gaussian random variables is also a Gaussian random variable.

15.2 Kalman Filter

The Kalman filter is an extremely well known algorithm for state estimation that leverages
the Gaussian distribution for efficiency. Unlike the discrete Bayes filter from the previous
chapter, this filter can be applied to problems with continuous states. In particular, a mul-
tivariate Gaussian distribution is used to parameterize the belief distribution over possible
states, in other words the state xt ∼ N (µt,Σt), and in long form this can be expressed as:

bel(xt) = p(xt) =
1√

det(2πΣt)
exp
(
− 1

2
(xt − µt)

TΣ−1
t (xt − µt)

)
.

15.2.1 Assumptions

To ensure that the belief remains Gaussian after the prediction and measurement update
steps of the filtering algorithm, several additional assumptions are required. First, it is
assumed that the initial belief bel(x0) is Gaussian with x0 ∼ N (µ0,Σ0) and that the state
transition model is linear and is given by:

xt = Atxt−1 +Btut + εt, (3)

where xt−1 is the previous state, ut is the most recent control input, and εt is an independent
process noise that is normally distributed with εt ∼ N (0,Rt). Because of the properties of
the Gaussian distribution presented earlier, this affine model preserves the Gaussian struc-
ture. In particular, the state transition model can be explicitly written as:

p(xt | xt−1,ut) =
1√

det(2πRt)
exp
(
− 1

2
(xt − Atxt−1 −Btut)

TR−1
t (xt − Atxt−1 −Btut)

)
.

In other words, this can be expressed in shorthand as xt ∼ N (Atxt−1 +Btut,Rt).
Second, the measurement model is also assumed to be linear, which again preserves the

Gaussian structure:
zt = Ctxt + δt, (4)
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where δt is an independent measurement noise that is normally distributed with N (0,Qt).
Again, this implies the measurement model can be expressed probabilistically as:

p(zt | xt) =
1√

det(2πQt)
exp
(
− 1

2
(zt − Ctxt)

TQ−1
t (zt − Ctxt)

)
,

and in shorthand as zt ∼ N (Ctxt,Qt).
To summarize, if the belief is modeled as a Gaussian distribution and the state transition

and measurement models are both linear with Gaussian noise, then the Bayes filter updates
can be applied and the belief will always remain Gaussian (i.e. the prediction and measure-
ment correction steps will not warp or alter the structure of the belief distribution)! This
results in a very practically efficient algorithm since now only the parameters µ and Σ need
to be updated by the algorithm.

15.2.2 Algorithm

The Kalman filter algorithm is a recursive Bayes filter whose prediction and measurement
correction steps take on a special form due to the structure of the Gaussian belief distributions
and the assumptions listed above. In particular, the Kalman filter algorithm is given in
Algorithm 1.

Data: µt−1,Σt−1,ut, zt
Result: µt,Σt

µ̄t = Atµt−1 +Btut

Σ̄t = AtΣt−1A
T
t +Rt

Kt = Σ̄tC
T
t (CtΣ̄tC

T
t +Qt)

−1

µt = µ̄t +Kt(zt − Ctµ̄t)
Σt = (I −KtCt)Σ̄t

return µt,Σt
Algorithm 1: Kalman Filter Algorithm

In this algorithm, the first two steps define the predicted mean µ̄t and covariance Σ̄t, and
the remaining steps perform the measurement correction. The matrix Kt that is computed
for the measurement correction is typically referred to as the Kalman gain. This prediction
and correction process is also shown graphically in Figure 2.

15.2.3 Practical Considerations

Due to the exploitation of the Gaussian distribution, the Kalman filter is a computationally
efficient algorithm that can handle continuous state values. However, the consideration of
Gaussian beliefs also restricts the flexibility of the probabilistic model. In particular, the
belief is forced to be unimodal which may limit performance. Additionally, the assumption
about the linearity of the state transition and measurement models may not be very accurate
for some robots and certain sensors, which can make the Kalman filter not perform well for
some robotics applications.
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Figure 2: Kalman filter prediction and measurement correction procedure.

15.2.4 Derivation

While it is possible to derive the Kalman filter algorithm by evaluating the Bayes filter
updates from the previous chapter (i.e. computing the integral of p(xt | xt−1,ut)p(xt−1,
etc.), it is more intuitive to directly leverage the properties of Gaussians presented in the
preceding section. First, from the prior belief distribution bel(xt−1) ∼ N (µt−1,Σt−1) the
predicted belief bel(xt−1) can be computed by using the affine transformation property of
Gaussian random variables and the sum of two independent Gaussian random variables
property. Specifically, these properties can be applied to the assumed linear state transition
model (3) to give:

µ̄t = Atµt−1 +Btūt + 0,

where the 0 is the mean of the independent noise εt ∼ N (0,Rt). The covariance properties
can similarly be used to give:

Σ̄t = AtΣt−1A
T
t +Rt.

For the measurement update it is possible to again use the properties of Gaussians to
simplify the derivation of the Kalman filter measurement correction step. In particular, that
the product of two Gaussians is also Gaussian. In fact, the product of the two Gaussians:

bel(xt) = p(zt | xt)bel(xt) = N (Ctxt,Qt)N (µ̄t, Σ̄t),

can be expressed as:

bel(xt) = η exp
(
− 1

2
Jt
)
,
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where η is a normalization constant and:

Jt = (zt − Ctxt)
TQ−1

t (zt − Ctxt) + (xt − µ̄t)
T Σ̄−1

t (xt − µ̄t).

To determine the mean µt and covariance Σt of this new Gaussian, one simple approach
is just take the first and second derivative of Jt with respect to xt. The mean is found
where the first derivative is zero, and the covariance is the (inverse) of the constant second
derivative:

0 = −CT
t Q

−1
t (zt − Ctµt) + Σ̄−1

t (µt − µ̄t),

Σ−1
t = CT

t Q
−1
t Ct + Σ̄−1

t .

Through some algebraic manipulation the mean can be written in terms of the covariance
Σt:

µt = µ̄t + ΣtC
T
t Q

−1
t (zt − Ctµ̄t),

and of course the covariance can be written as:

Σt = (CT
t Q

−1
t Ct + Σ̄−1

t )−1.

While it is technically possible to stop here, this is not quite the form of the Kalman filter
equations. In particular a few more algebraic steps are needed, based on the matrix inversion
lemma result:

(CT
t Q

−1
t Ct + Σ̄−1

t )−1 = Σ̄t − Σ̄tC
T
t (CtΣ̄tC

T
t +Qt)

−1CtΣ̄t.

By choosing to define the Kalman gain as Kt = Σ̄tC
T
t (CtΣ̄tC

T
t +Qt)

−1 it can be seen that
the covariance can be expressed as:

Σt = Σ̄t −KtCtΣ̄t,

Through some additional algebra, the expression for the mean can also be expressed in terms
of the Kalman gain and simplified to its final form:

µt = µ̄t +Kt(zt − Ctµ̄t).

For more details on the algebraic steps see [TBF05].

15.3 Extended Kalman Filter (EKF)

The extended Kalman filter (EKF) is a modified version of the Kalman filter that revisits
the assumption of linearity for the state transition and measurement models. This extension
still exploits the Gaussian distribution to represent the belief in a computationally efficient
parametric way, but by generalizing to more complex models the EKF can be applied to a
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wider variety of robotics state estimation and localization problems. In particular, the EKF
considers general nonlinear state transition and measurement models defined as:

xt = g(ut,xt−1) + εt,

zt = h(xt) + δt,
(5)

where again εt ∼ N (0,Rt) and δt ∼ N (0,Qt) are normally distributed noise terms.
The EKF handles these nonlinear functions by taking advantage of their first order Taylor

series expansions (which are linear functions, similar to those used in the Kalman filter). In
particular the Taylor series expansion of the state transition model g is performed about the
most likely state from the current belief distribution, which is the expected value µt−1:

g(ut,xt−1) ≈ g(ut,µt−1) +Gt(xt−1 − µt−1),

where Gt = ∇xg(ut,µt−1) is the Jacobian of g evaluated at µt−1. From this linear approxi-
mation the state transition model can be expressed as:

p(xt | xt−1,ut) =
1√

det(2πRt)
exp
(
− 1

2
∆xT

t R
−1
t ∆xt

)
,

where
∆xt = xt − g(ut,µt−1)−Gt(xt−1 − µt−1).

From this result, the linear predictions that are used in the Kalman filter algorithm can be
replaced by the nonlinear generalizations:

µ̄t = g(ut,µt−1),

Σ̄t = GtΣt−1G
T
t +Rt.

As can be seen the prediction of the new mean is simply an evaluation of the nonlinear
function g, and the updated covariance is very similar to the Kalman filter but leverages the
Jacobian Gt.

A very similar procedure is used for the measurement corrections. The measurement
model is also Taylor series expanded to yield (this time about the predicted point µ̄t):

h(xt) ≈ h(µ̄t) +Ht(xt − µ̄t),

where Ht = ∇xh(µ̄t) is the Jacobian of h evaluated at µ̄t. The measurement model can
then be expressed using this approximation as:

p(zt | xt) =
1√

det(2πQt)
exp
(
− 1

2
∆zTt Q

−1
t ∆zt

)
,

where ∆zt = zt − h(µ̄t)−Ht(xt − µ̄t). From this result the measurement correction in the
EKF can be shown to be similar to the Kalman filter, but where the Jacobians Ht are used:

µt = µ̄t +Kt(zt − h(µ̄t)),

Σt = (I −KtHt)Σ̄t,

where the Kalman gain is Kt = Σ̄tH
T
t (HtΣ̄tH

T
t +Qt)

−1.

7



15.3.1 Algorithm

The extended Kalman filter algorithm is quite similar to the Kalman filter algorithm outlined
in Algorithm 1. In particular the main differences are that the updates use the nonlinear
functions and their Jacobians rather than assuming strictly linear models. The EKF algo-
rithm is outlined in Algorithm 2.

Data: µt−1,Σt−1,ut, zt
Result: µt,Σt

µ̄t = g(ut,µt−1)
Σ̄t = GtΣt−1G

T
t +Rt

Kt = Σ̄tH
T
t (HtΣ̄tH

T
t +Qt)

−1

µt = µ̄t +Kt(zt − h(µ̄t))
Σt = (I −KtHt)Σ̄t

return µt,Σt
Algorithm 2: Extended Kalman Filter Algorithm

15.3.2 Practical Considerations

The extended Kalman filter can provide more accurate results than the Kalman filter in
many applications due to its ability to consider more general nonlinear models. However,
the approximation of the nonlinear models by a Taylor series expansion can lead to the filter
to diverge if the approximation is not accurate enough. Additionally, the EKF still suffers
from the same unimodal modeling assumption as the Kalman filter since the beliefs are still
represented by a single Gaussian distribution.

15.4 Unscented Kalman Filter

The unscented Kalman filter (UKF) is another variation of the Kalman filter (still uses
Gaussian distribution to parameterize the belief). This filter is also similar to the EKF in
that it can handle nonlinear state transition and measurement models. However, this filter
improves upon the EKF by not relying on Taylor series expansions, which can cause filter
divergence due to approximation errors. This is accomplished by representing the Gaussian
through a set of sigma-points that are transformed through the nonlinear functions. Once
each sigma-point has been updated, a new Gaussian distribution is computed to represent
the updated belief.
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