AA274A: Principles of Robot Autonomy I
Course Notes

Previous chapters introduced some of the fundamental concepts related to robotic percep-
tion, and specifically techniques for sensing the environment and extracting useful semantic
information. While these techniques provide local information that is crucial for robots to
navigate autonomously, additional global information is often required. For example, dis-
tance measurements from a laser rangefinder might be useful for detecting objects in an
environment, but they only provide information relative to the robot’s current position. Al-
ternatively, object detection via computer vision only provides information about what is in
the robot’s current view. Robotic autonomy, in particular autonomous decision making and
planning, generally requires more than just local information to answer questions such as
“have I seen this object before?” and “have I been here before?”. These new challenges, as-
sociated with building a global understanding of the environment from local measurements,
are often referred to as localization and mapping®.

14 Introduction to Robot Localization

The problem of localization is to endow the robot with the ability to understand its current
position with respect to its environment in a global sense. One of the main classes of tech-
niques for robot localization are map-based, where the robot explicitly localizes its position
with respect to a map of the environment. For example, consider the floor plan (the envi-
ronment map) in Figure 1: before a robot can navigate to a particular room it must know
where in the building it is currently located.?

There are two primary components to map-based localization: map representation and
belief representation. This chapter focuses on belief representation, which addresses the
problem of how to best represent the robot’s belief of its current position with respect to the
map. One simple approach would be to simply store a best guess of the robot’s position (in
some map-based coordinate system). However in practice localization information is often
uncertain, and representing the belief by only a best guess does not capture this important

'Localization and mapping is the component of the “think” part of the “see, think, act” cycle that
connects with robotic perception.

20ther approaches to navigate in environments include behavioral approaches, which rely on a specified set
of behaviors that will result in a desired global behavior without the need for explicit mapping or localization.
An example of this approach would be to have a left-wall following behavior for movement about a building.
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Figure 1: An example environment where localization is crucial for robotic autonomy
[SNS11]. For a robot to move from location A to location B it must first understand which
room it is in, and that the only path to B is through the hallways. Extracting such global
information about the environment from local measurements (e.g. from a range sensor)
requires specialized algorithms.

fact. Therefore one common approach is to use a probabilistic representation of the robot’s
belief since probability distributions can be used to model uncertainty (and extract best
guesses, for example by finding the mean of a unimodal distribution). A variety of prob-
abilistic representations can be used, for example singe-hypothesis or multiple-hypothesis
representations as well as continuous or discrete representations. A few examples showing
the differences between these types of representations are given in Figure 2. Some represen-
tations are more expressive than others, but there is usually a trade-off with computational
complexity of the resulting algorithms that support the representation. Algorithms based
on these different probabilistic representations will be presented in this chapter and in sub-
sequent chapters.

14.1 Basic Concepts in Probability

Before discussing different types of robot localization algorithms it is useful to provide a
review of some of the fundamental concepts from probability.

14.1.1 Random Variables

Uncertain quantities such as sensor measurements, robot state, and environment variables
can be modeled as discrete or continuous random variables.

Definition 14.1 (Discrete Random Variable). A discrete random variable X is a random
variable that can only take on values from a countable set. Discrete random variables are
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Figure 2: A graphical representation of different types of probabilistic representations: (a)
a continuous single-hypothesis belief (e.g. from a single Gaussian distribution), (b) a con-
tinuous multiple-hypothesis belief (e.g. a mixture of Gaussians), (c) discrete representation
with a finite number of possible values [SNS11].

characterized by a probability mass function p(x) (which can be read as p(X = x), “the
probability that X takes on value x”) that satisfies:

> (@) =1,

where the summation is over all possible values of X.

Definition 14.2 (Continuous Random Variable). A continuous random variable X is a ran-
dom variable that can take on values from a continuous range. Continuous random variables
are characterized by a probability density function p(x) that satisfies:

/_Zp(x)dx =1.

The probability of the random wvariable taking on a value in the interval [a,b] is similarly

defined as:
b
Pla < X <) :/ p(z)dr = 1.



A common example of a discrete random variable is the result of a coin flip, which can
only take on two values: heads or tails. In robotics, a common example of a continuous
random variable may be the position of the robot, which could take on an infinite number
of values.

14.1.2 Joint Distributions, Independence, and Conditioning

Many applications of probability theory rely on more than one random variable. In these
instances it is useful to be able to quantify probabilities associated with multiple random
variables at the same time. One of the most fundamental tools when dealing with multiple
variables is the joint distribution.

Definition 14.3 (Joint Distribution). The joint distribution of two random variables X and
Y defines the probability associated with both taking on specific values at the same time. This
is denoted mathematically as p(x,y), which can be read as p(X =z and Y =y).

It is also useful to determine whether different random variables have any relationship
to each other. In particular, two random variables that do not have any influence on each
other in a probabilistic sense are considered to be probabilistically independent.

Definition 14.4 (Independence). Two random variables X and Y are independent if and
only if:

p(z,y) = p()p(y). (1)
Independence holds when the occurrence of one wvalue of a random variable does not affect
the probability of another random variable taking on a specific value.

Another useful tool that relates two random variables is the conditional probability, which
defines the probability of a random variable when the value of a second random variable is
known or fized.

Definition 14.5 (Conditional Probability). The conditional probability of a random variable
X taking on a value given that a second random variable Y has a specific value is defined as:

pe|y) = P&Y, @)

This can be read as “the probability of X taking on value x conditioned on the fact that'Y
has taken on value y”.

Notice that if the random variables X and Y are independent, then the conditional
probability definition simplifies to p(x | y) = p(x), which suggests that knowing that Y has
taken on value y has provided no new information about the random variable X (which
of course is in line with the definition of independence). Additionally, another notion of
independence can be defined based on whether or not two random variables are independent
when conditioned a third random variable.



Definition 14.6 (Conditional Independence). Two random variables X and Y are condi-
tionally independent given the value of a third random variable Z if and only if:

plz,ylz) =plx|2)py|2). (3)

It is important to note however that conditional independence does not imply indepen-
dence, and vice versa.

14.1.3 Law of Total Probability

The law of total probability defines a relationship between probabilities, joint probabilities,
and conditional probabilities.

Definition 14.7 (Law of Total Probability). For discrete random variables X and Y the
law of total probability states that:

pla) = plx,y) =D plxy)py).
Yy Yy
Similarly, for continuous random variables this law is given by:

p(z) = / p(, y)dy = / p( | 9)p(y)dy.

In words, this law says that the probability of a random variable X taking on a value x
can be found by looking at the joint probabilities between X and Y and accounting for all
possible values of Y. The second part of the law is a direct result of applying the definition
of conditional probabilities.

14.1.4 Bayes’ Rule

The joint probability p(x,y) between two random variables X and Y can be related to the
conditional probabilities p(x | y) and p(y | ) via the definition of conditional probabilities
(2). In particular, since the joint probability can be equivalently expressed in two ways it
can be seen that:

p(x,y) = p(z | y)p(y) = ply | 2)p().

This relationship is commonly referred to as Bayes’ rule:

Definition 14.8 (Bayes’ Rule). For discrete random variables X and Y, Bayes’ rule states
that:
ply | 2)p(r) "
p(y)

Bayes’ rule is useful as it provides a relationship between the “inverse” conditional prob-
abilities p(x | y) and p(y | z). This is particularly important for probabilistic inference, which
is the problem of inferring the value of a random variable from another.

plr|y) =
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For example, suppose you had a good initial guess of the probability distribution p(x)
for a random variable X (the distribution p(z) in this case is often called the prior, because
it is the guess that comes before any new information is taken into account). Then, suppose
some new information regarding the value of a random variable Y is obtained. Using Bayes’
rule it is possible to update your belief about the probability distribution of X based on this
new information. In particular, the new belief is the conditional probability p(z | y) (which
is often called the posterior because it comes after new information is introduced). These
two distributions are related by Bayes’ rule!

Bayes’ rule can also be extended to cases with additional random variables. For example
with three random variables X, Y, and Z, Bayes’ rule is:

_ plylz, 2)p(z]2)
el =TT

14.1.5 Expectation and Covariance

Probability distributions define in a vary precise way the probability associated with any
particular value of a random variable. However, sometimes it is useful to aggregate this
information into more practically useful metrics. Two of the most commonly used metrics
are the expected value and the covariance.

Definition 14.9 (Expected Value). The ezpected value for a random variable X is denoted
as E|X]. For discrete random variables the expected value can be computed by:

E[X] =) ap(x).
Similarly, the expected value for a continuous random variable can be computed by:

BIX] = / op(a)da.

The expected value can be thought of as the average result of an experiment over an
infinite number of trials, and is also sometimes referred to as the first moment of the distri-
bution. Additionally, expectation is a linear operator, such that:

ElaX + b = aE[X] + b,

for any values a and b. In the case that the random variable X is a vector-valued random
variable, the expectation of the random vector is simply the vector of expectations of each
element.

Definition 14.10 (Covariance). The covariance between two random variables X and Y is
denoted cov(x,y) and is computed by:

cov(w,y) = B[(X — E[X])(Y - E[Y]))"] = E[XY"] - EIX]E[Y]"
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Covariance is a metric used to describe the relationship between random variables and
is positive if greater values of one variable generally corresponds to greater values of the
other (and same for lesser values). Similarly, it is negative if the variables tend to show
opposite behavior of each other. If there is no general relationship between the two then
their covariance is zero (e.g. independent random variables have zero covariance).

14.2 Markov Models

Recall from previous chapters the kinematic and dynamic models that were developed to
describe the physical behavior of a robot. These models consisted of a robot state , and a
set of equations that described how @ varied in time given some control inputs w. In this
section another type of model will be developed that is based on these same core ideas. These
new models, referred to as Markov models, are commonly used in robotics for localization
tasks as well as higher level planning tasks.

14.2.1 States, Measurements, and Controls

Similar to previous chapters, the state @ is a collection of variables that contains information
required to define the physical state of the robot. However unlike previous chapters, the
state might also include information about the environment (this state has a higher-level
perspective). In the context of robotics, the state may include the robot pose (i.e. location
and orientation information), velocity, as well as locations and features of surrounding objects
in the environment. Note that in general the state discussed in this section might be different
from the state defined for robot kinematics and dynamics (even if the robot is the same).
This is because the choice of model is usually specific to the task at hand, and while the
kinematic and dynamic models are useful for control, they may not strictly be necessary (or
sufficient) for use in localization and planning tasks.

A discrete time formulation is also used in this context, where the state is specified
for discrete time instances and denoted by x; (rather than x(t), as was done in previous
chapters). The models developed in this section then describe the changes in the state
between time steps, for example between x; and a; .. It is also useful to define the notation
Ty 4, = T4y, Ty, ..., Ty, fOr describing a sequence of states between times ¢, and ¢,.

The robot interacts with the environment through control actions and by gathering
information through measurements®. In this context, the measurement data collected at
a time ¢ will be denoted as z;, and the control data is denoted as wu;. Similar to the
state, a useful notation for representing a sequence of measurements or controls is given
by 2i,4, = 2y, Ztyy -y 21, ANd Uy, = Uy, Uy, ..., Uy, . 1D general, the measurements can
come from any number of the sensors discussed in previous sections on robotic perception,
including cameras and laser rangefinders.

3In the context of robot localization, measurements increase the robot’s knowledge and control actions
tend to result in a loss of knowledge.



14.2.2 Model

The kinematic and dynamic models from previous chapters (expressed as a set of ordinary
differential equations) were deterministic models. However, to leverage a probabilistic frame-
work for robot localization it is typically required that the model also be probabilistic. In
the most general sense a probabilistic model can be defined by:

(@t | o1, 2161, Uit), (5)

which defines a probability distribution over the possible current state ax; given the state,
measurement, and control histories. Note that here the convention that will be used is that
the robot executes control u; first, and then the measurement z; can be made based on the
resulting state x;. A general probabilistic measurement model can also be defined as:

p(21 | Tows 21201, Uit).- (6)

In many cases however, the state is defined such that it is complete. A state x; is complete

if no variables prior to x; can influence the future states. In other words, @ contains a

sufficient amount of information that the history is not important. This is also known as the

Markov property. If the Markov property holds, the probabilistic model (5) can be simplified
to:

p(y | o1, w), (7)

and the measurement model (6) can be simplified to:

p(zt | ). (8)

The resulting overall model with the Markov property, consisting of the state transition
probability (7) and the measurement model (7) is referred to as a Bayes network model or
a hidden Markov model. Graphically this model can be represented as shown in Figure 3,
where the sequencing of the control and measurements are more clearly shown (first control,
then measurement).

14.3 Bayes Filter

Given a Bayes network model defined by a state transition model (7) and a measurement
model (8), the next task is to determine a way to use this information for robot localization.
In particular, the desired task is to estimate the current robot state x; given the measurement
and control information that is available. In the probabilistic framework this estimate is
referred to as a belief distribution, which is a probability distribution over x. This distribution
assigns a probability to each hypothesis with respect to the true state. Mathematically the
belief distribution is denoted as bel(x;) and is defined as:

bel(xy) = p(xy | 214, Urt)- (9)



Figure 3: Graphical representation of the Bayes network model (hidden Markov model).
Note that the sequencing assumes that the control is applied, and then a measurement is
taken.

In other words, the belief bel(x;) is a posterior probability distribution over the state vari-
ables conditioned on the available data. A similar distribution, known as the prediction
distribution, can also be defined as:

bel(xy) := p(xy | Z14-1, U1y, (10)

which is does not include the most recent measurement z;. The process of computing a belief
from a predicted belief (i.e. the process of accounting for the new measurement z;) is called
a correction or measurement update.

The most general algorithm for computing beliefs bel(x;) (which leverages Bayes network
models that satisfy the Markov property) is known as the Bayes filter. This filter is a recursive
algorithm that consists of a prediction step for computing bel(z;) and a correction step for
computing bel(x;) given a new measurement z;.

14.3.1 Algorithm

The Bayes filter algorithm is given in Algorithm 1. In this algorithm, the probability asso-
ciated with each potential state x; is updated via a prediction and a correction. The term
1 in the correction step is simply a normalization constant that ensures the resulting pos-
terior bel(x;) satisfies the requirements of a probability density function*. This algorithm
is typically initialized with a prior distribution bel(x,) that may come from a best guess or
simply a uniform distribution. Note that the prediction step is essentially just using the
state transition model (7) to guess what might happen to each state for the given control
u;. The correction step is then modifying the prediction to actually account for what was
observed in the real world.

4In fact this normalization constant comes from the denominator in Bayes’ rule.



Data: bel(x;_1), uy, 2

Result: bel(x;)

foreach x; do
bel(zy) = [ p(a; | wy, 2 1)bel(zy1)da,
bel(xy) = np(z¢ | x,)bel(x)

end

return py ;
Algorithm 1: Bayes Filter Algorithm

14.3.2 Derivation

Recall that the belief distribution is defined as (9), which can be expanded using Bayes’ rule
to yield:

b@l(wt) = p(mt | zl:taul:t)v

= Up(zt | Ty, zl:t—l;ulzt)p(wt | Zl:t—la“l:t)a

where
1

p(zt | 211, ul:t)'

The Markov property can then be leveraged to simplify p(z; | @y, 2141, u1.4) = p(2; | @)
and the definition of the prediction belief can be used to give:

77:

bel(xz,) = np(z, | x)bel(xy),

which is precisely the second step of the Bayes filter algorithm. Now the derivation of the
prediction can be given by again starting from its definition and leveraging the law of total
probability:

@(wt) = p(mt ’ zl:tflaulzt)a

= /p(e’Bt | mt—l,Z1:t—1,U1:t)p(iBt—1 | Zl:t—hul:t)dmt—l-

Again the Markov property can now be used to simplify p(x; | i1, 2141, U1.1) = p(x; |
x;_1,u;), and additionally the structure of the model makes it possible to remove the u,
term from the prior distribution p(x;_1 | 2141, u1,) since the control u, has no impact on
the state x;_1 (see Figure 3). Therefore the expression above can be simplified to:

M(mt) = /p(:l:t | CBt_l,Ut)b@l(mt_l)dmt_l,

since by definition bel(x;—1) = p(@; | 21.4-1,w14—1). This result is precisely the prediction
step from the Bayes filter algorithm.

10



14.3.3 Practical Considerations

The Bayes filter is a great starting point to derive many useful algorithms, but is itself often
not practical to implement. In particular it is generally not reasonable to assume that the
integrals in Algorithm 1 can be computed, and if they could be approximated via a numerical
scheme this may computationally still be challenging.

14.4 Discrete Bayes Filter

The discrete Bayes filter is a discrete version of the Bayes filter previously introduced. This
filter can be applied to problems where the state space is finite (i.e. only a finite number of
values of @ are possible). This makes the Bayes filter approach more tractable because the
integrals do not need to be computed over an infinite set.

In the discrete Bayes filter the belief bel(ax;) is represented using a probability mass
function rather than a probability density function (as is the case with the continuous Bayes
filter). In particular, this probability mass function is simply a finite collection of probabilities
{pk+} where py, is the probability associated with state k at timestep t. The algorithm
generally follows the exact procedure as the Bayes filter in Algorithm 1, but with summations
replacing the integrals. In particular, the discrete Bayes filter algorithm is provided in
Algorithm 2.

Data: {py;—1},us, 2

Result: {py.}

foreach £ do
Pri = 2 P(®e | Wi, @3)pig—1
Prg = P2 | @)D

end

return py;
Algorithm 2: Discrete Bayes Filter Algorithm
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