
AA274A: Principles of Robot Autonomy I
Course Notes

The last chapter introduced some fundamental topics related to image processing, namely
filtering, feature detection, and feature description. While these techniques are quite useful
for a large number of computer vision applications, they may not be sufficient to extract
higher-level information from images. For example, the features that were discussed are
local features that describe important keypoints of the image, but these may be too localized
to discuss higher-level features or semantic content. In some cases it may be possible to
correlate local features to extract higher-level information (e.g. image matching), but in
other cases higher-level algorithms may be useful (e.g. identifying a particular object in a
scene, such as a person). In particular, object recognition is a very important task in robotics
and therefore some common methods for object recognition will be discussed in this chapter.

This chapter will additionally focus on geometric feature extraction, which is used to
extract structure from data in the form of geometric primitives (e.g. lines, circles, planes).
This is very useful in robotics for localization and mapping, and these algorithms can gen-
erally be applied to different types of data, such as data extracted from images or even data
collected via laser rangefinders or radar.

12 Information Extraction

This chapter will focus on common methods for extracting higher-level environmental in-
formation from sensor data that is useful for robotics. In particular, common algorithms
for geometric feature extraction will be presented, as well as methods for object recognition
in images. Such information is crucial for robots operating in real environments to enable
intelligent decision making and task planning, as well as to execute plans safely in unknown
environments with obstacles.

12.1 Geometric Feature Extraction

It is very common in robotic localization and mapping to represent the environment using
simple geometric primitives (e.g. lines, circles, corners, planes) that can be efficiently ex-
tracted from sensor data. In particular, in this section techniques for line extraction from

1

range data1 will be presented. Lines in particular are one of the most fundamental geometric
primitives to be extracted, and generally the techniques for extracting other primitives are
conceptually similar.

There are two main challenges with extracting lines from range data. The first is called
segmentation, which is the task of identifying which data points belong to which line (and
inherently also identifying how many lines there are). The second is fitting, which is the
task of estimating the parameters that define a line given a set of points. For simplicity this
chapter will consider line extraction problems based on two-dimensional range data.

12.1.1 Line Segmentation

The line segmentation problem is to determine how many lines exist in a given set of data
and also which data points correspond to each line. Three popular algorithms for line
segmentation will be discussed, the split-and-merge algorithm, the random sample consensus
(RANSAC) algorithm, and the Hough-transform algorithm.

Split-and-Merge: The split-and-merge algorithm is perhaps the most popular line ex-
traction algorithm and is arguably the fastest (but not as robust to outliers). The concept
of this algorithm is quite simple: repeatedly fit lines to sets of points and then split the set
of points into two sets if any point lies more than distance d from the line. By repeating this
process until no more splits occur, it is guaranteed that all points will lie less than distance
d to a line. After this “split” process is completed, a second step merges any of the newly
formed lines that are colinear. This algorithm is presented in more detail in Algorithm 1.
A popular variant of the split-and-merge algorithm is known as the iterative-end-point-fit
algorithm. This algorithm is simply the split-and-merge algorithm given in Algorithm 1
where the line is simply constructed by connecting the first and the last points of the set.
This approach is shown graphically in Figure 1.

Figure 1: Iterative-end-point-fit variation of the split-and-merge algorithm for extracting
lines from data.

1Range data can generally come from a variety of sources, including laser rangefinders, radar, or even
computer vision.

2

Data: Set S of N points, distance threshold d > 0
Result: A list L of sets of points each resembling a line
L←− [S]
i←− 1
while i ≤ len(L) do

fit a line (α, r) to the set L[i]
detect the point P ∈ L[i] with maximum distance D to the line (α, r)
if D < d then

i←− i+ 1
else

split L[i] at P into new sets S1 and S2

L[i]←− S1

L[i+ 1]←− S2

end

end
Merge colinear sets in L

Algorithm 1: Split-and-Merge

Random Sample Consensus (RANSAC): Random Sample Consensus (RANSAC) is
an algorithm to estimate the parameters of a model from a set of data that may contain
outliers (i.e. robust model parameter estimation). Outliers are data points that do not fit
the model and may be the result of high noise in the data, incorrect measurements, or simply
points which come from objects that are unrelated to the current model. For example, a
typical laser scan of an indoor environment may contain distinct lines from the surrounding
walls but also points from other static and dynamic objects (e.g. chairs or humans). In this
case, if the goal was to extract lines to represent the walls then any data point corresponding
to other objects would be an outlier. In general, RANSAC can be applied to many parameter
estimation problems, and typical applications in robotics include line extraction from 2D
range data, plane extraction from 3D point clouds, and structure-from-motion (where the
goal is to identify image correspondences which satisfy a rigid body transformation). However
for simplicity this section focuses on using RANSAC for line extraction from 2D data.

RANSAC is an iterative method and is non-deterministic (i.e. stochastic or random).
Given a dataset S of N points, the algorithm starts by randomly selecting a sample of two
points from S. Then a line is constructed from these two points and the distance of all other
points to this line is computed. A set of inliers comprised of all the points whose distance to
the line is within a predefined threshold d is then defined. By repeating this process k times,
k inlier sets (and their associated lines) are generated and the inlier set with the most points
is returned. This procedure is detailed in Algorithm 2 and is also illustrated in Figure 2.

Due to the probabilistic nature of the algorithm, as the number of iterations k increases
the probability of finding a good solution increases. This approach is used over a brute force
search of all possible combinations of two points since the total number of combinations is
N(N −1)/2, which can be extremely large. In fact, a simple statistical analysis of RANSAC

3

Data: Set S of N points, distance threshold d
Result: Set with maximum number of inliers and corresponding line
while i ≤ k do

randomly select 2 points from S
fit line li through the 2 points
compute distance of all other points to li
construct set of points S̃i with distance less than d to li
store line li and set of points S̃i i←− i+ 1

end

Choose set S̃i with maximum number of points
Algorithm 2: Random Sample Consensus (RANSAC) for Line Extraction

can be performed.
Let p be the desired probability of finding a set of points free of outliers and let w be the

probability of selecting an inlier from the dataset S of N points, which can be expressed as:

w =
inliers

N
.

Assuming point samples are drawn independently from S, the probability of drawing two
inliers is w2 (and 1 − w2 is the probability that at least one is an outlier). Therefore, with
k iterations the probability that RANSAC never selects two points that are both inliers is
(1− w2)k. Therefore the minimum number of iterations k̄ needed to find an outlier-free set
with probability p can be found by solving:

1− p = (1− w2)k,

for k. In other words, k̄ can be computed as:

k̄ =
log(1− p)

log(1− w2)
.

While the value of w may not be known exactly2, this expression can still be used to get a
good estimate of the number of iterations k that are needed for good results. It is important
to note that this probabilistic approach often leads to a much smaller number of iterations
than for brute force searching through all combinations. This can be attributed to the fact
that k̄ is only a function of w and not the total number of samples N in the dataset.

Overall, the main advantage of RANSAC is that it is a generic extraction method and can
be used with many types of features given a feature model. It is also simple to implement
and is robust with respect to outliers in the data. The main disadvantages are that the
algorithm needs to be run multiple times if multiple features are to be extracted, and there
are not guarantees that the solutions will be optimal.

2There also exist advanced versions of RANSAC that can estimate w in an adaptive online fashion.

4

Figure 2: Working principle of RANSAC: (a) a dataset S of N points is given, (b) two points
are randomly selected and a line is fit, then points within a predefined distance to the line
are identified, (c) the procedure is repeated several times, (d) the set with the maximum
number of inliers is chosen as a solution to the problem.

Hough Transform: In the Hough transform algorithm, each point (xi, yi) of the set S
“votes” for a set of possible line parameters (m, b) (i.e. slope and intercept). For any given
point (xi, yi) the candidate set of line parameters (m, b) that could pass through this point
must satisfy yi = mxi + b, which can also be written as:

b = −mxi + yi.

Therefore it can be noted that each point in the original space space (x, y) maps to a line in
the Hough space (m, b) (see Figure 3). The Hough transform algorithm exploits this fact by
noting that two points on the same line in the original space will yield two intersecting lines
in Hough space. In particular, the point where they intersect in the Hough space corresponds
to the parameters m∗ and b∗ that defines the line passing between the points in the original
space (see Figure 4).

5

Figure 3: Each point (xi, yi) in the original space maps to a line in the Hough space which
describes all possible parameters m and b that would generate a line passing through the
point (xi, yi).

Figure 4: All points on a line in the original space yield lines in the Hough space that
intersect at a common point.

This concept can be applied to line segmentation by searching in the Hough space for
intersections among the lines that correspond to each point (x, y) in the set S. In practice,
this can be done by discretizing the Hough space with a grid and simply counting for each
grid cell the number of lines corresponding to (xi, yi) points from S that pass through it.
Local maxima among the cells then can be chosen as lines that “fit” the data set S.

However, performing a discretization of the Hough space requires a trade-off between
range and resolution (in particular because m can range from −∞ to ∞. Alternatively, it is
possible to use a polar coordinate representation of the Hough space which defines a line as:

x cosα + y sinα = r,

where (α, r) are the new line parameters. With this representation, a point (xi, yi) from the
original space gets mapped to the polar Hough space (α, r) as a sinusoidal curve (see Figure
5). An example of the Hough transform using the polar representation is given in Figure 6.

12.1.2 Line Fitting

Line segmentation is the process of identifying which data points belong to a line, and line
fitting is the process of estimating parameters of a line for those corresponding data points.

6

Figure 5: Representation of a point (xi, yi) in the Hough space when using a polar coordinate
representation of a line with parameters α and r.

Figure 6: Example of the Hough transformation using a polar coordinate representation of
lines.

7

For the line segmentation algorithms previously discussed (i.e. split-and-merge, RANSAC,
and Hough-transform), a line associated with the segmented data points was also implicitly
defined. However, the lines implicitly defined from the segmentation algorithms may not
always be ideal and so other techniques have been developed to specifically address the line
fitting task.

Line fitting algorithms search for lines that best fit a set of data points. In almost all
cases the problem is over-determined (i.e. there are more data points than parameters to
choose) and noise in the data means that there is not perfect solution. Therefore one of the
most common approaches to line fitting is based on least-squares estimation, which tries to
find a line that minimizes the overall error in the fit. For this approach it is useful to work
in polar coordinates defined by:

x = ρ cos θ, y = ρ sin θ,

where (x, y) is the 2D Cartesian coordinate of a data point and (ρ, θ) is the 2D polar coor-
dinate. In polar coordinates the equation of a line is given by

ρ cos(θ − α) = r, or x cosα + y sinα = r, (1)

where α and r are the parameters that define the line. For a visual representation of these
definitions see Figure 7. For a collection S of N points (ρi, θi), the error di corresponding

Figure 7: Representation of a line in polar coordinates, defined by the parameters r and α
which are the distance and angle to the closest point P0 on the line to the origin.

to the perpendicular distance from a point to a line defined by parameters α and r can be
computed by:

di = ρi cos(θi − α)− r. (2)

The line fitting task can then be formulated as an optimization problem over the parameters
α and r to minimize the combined errors di for i = 1, . . . , N . In particular, the combined

8

errors are aggregated using a sum of the squared errors:

S(r, α) =
N∑
i=1

d2i =
N∑
i=1

(ρi cos(θi − α)− r)2. (3)

This is a classic least squares optimization problem that can be efficiently solved. However,
this cost function generally assumes that each of the data points is equally affected by noise
(i.e. the uncertainty of each measurement is the same). In some cases it might be beneficial
to account for differences in data quality for each point i, which could give preference to well
known points.

Accounting for unique uncertainties in each data point leads to a weighted least squares
estimation problem. In particular, it is assumed that the variance of each range measurement
ρi is given by σi. The cost function (3) is then modified to be:

Sw(r, α) =
N∑
i=1

wid
2
i =

N∑
i=1

wi(ρi cos(θi − α)− r)2, (4)

where the weights wi are given by:

wi =
1

σ2
i

.

It can be shown that the solution to the optimization problem defined by the weighted cost
function (4) is given by:

r =

∑N
i=1wiρi cos(θi − α)∑N

i=1wi

,

α =
1

2
atan2

 ∑N
i=1wiρ

2
i sin(2θi)− 2∑N

i=1 wi

∑N
i=1

∑N
j=1wiwjρiρj cos θi sin θj∑N

i=1wiρ2i cos(2θi)− 1∑N
i=1 wi

∑N
i=1

∑N
j=1wiwjρiρj cos(θi + θj)

 +
π

2
.

(5)

12.2 Object Recognition

Another high-level information extraction task that is common in robotics is object recog-
nition. Object recognition is the task of classifying or naming discrete objects in the world
(usually based on images or video). This can be a particularly challenging task because real
world scenes are commonly made up of many varying types of objects which can appear at
different poses and can occlude each other. Additionally, objects within a specific class can
have a large amount of variability (e.g. breeds of dogs or car models). In this section three
common methods for object recognition will be introduced, namely template matching, bag
of visual words, and neural network methods.

9

12.2.1 Template Matching

Template matching is a machine vision technique for identifying parts of an image that match
a given image pattern3. This approach has seen success in a variety of applications, including
manufacturing quality control, mobile robotics, and more. The two primary components
needed for template matching are the source image I and a template image T

Given a source and template image, one approach to template matching is to leverage
the linear spatial correlation filters discussed in the previous chapter. In particular, a naive
approach would be to use the normalized template image as a filter mask in a correlation
filter. By applying this filter mask to every pixel in the source image the resulting output
would quantify the similarity of that region of the source image to the template. This type
of approach is sometimes referred to as a cross-correlation. Another approach based on
linear spatial filters from the previous chapter would be to leverage the similarity filters that
compute the sum of absolute differences (SAD) metric for each pixel in the source image.
Regions of the source image similar to the template would correspond to low SAD scores.
The disadvantages of these approaches is that do not handle rotations or scale changes, which
are quite common in real world applications.

One solution to the scaling issue in correlation filter based template matching is to simply
re-scale the source image multiple times and perform template matching on each. This
concept, referred to as using image pyramids, can also be used to accelerate object search by
using a coarser resolution image first to localize the object and then using finer resolution
images for actual detection. Building image pyramids can be accomplished in several ways.
One naive approach is to simply eliminate some rows and columns of the image. Another
approach is to first use a Gaussian smoothing filter to remove high frequency content form the
image and then subsample the image. The sequence of images resulting from this approach
is referred to as a Gaussian pyramid.

12.2.2 Bag of Visual Words

The key idea behind the bag of visual words4 approach is that object representations can be
simplified by considering them as a collection of their subparts (e.g. a bike is an object with
wheels, a frame, and handlebars), and the subparts are referred to as visual words. In this
approach a source image is searched for visual words, and a distribution of visual words that
are found in the image is created (in the form of a histogram). Object detection can then be
performed by comparing this distribution to a set of training images. For example, suppose
the source image contains a human face and the recognized features included eyes and a
nose. Then by comparing the distribution to training images, it would likely be determined
that training images that also have eyes and a nose are also images of faces.

3Advanced template matching algorithms allow finding pattern occurrences regardless of their orientation
and local brightness.

4The model originated in natural language processing, where we consider texts such as documents, para-
graphs, and sentences as collections of words - effectively “bags” of words.

10

Figure 8: A traditional image pyramid: each level has half the resolution (width and height),
and hence a quarter of the pixels, of its parent level [Sze10].

12.2.3 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) represent a relatively new and very powerful paradigm
in object recognition. These approaches were first introduced in the field of computer vision
for image recognition in 1989 [LMB+90] and since then have significantly boosted perfor-
mance in image recognition and classification tasks. Research in this field is also still very
active.

References

[LMB+90] Y. Le Cun, O. Matan, B. Boser, J. S. Denker, D. Henderson, R. E. Howard,
W. Hubbard, L. D. Jacket, and H. S. Baird. Handwritten zip code recognition
with multilayer networks. In [1990] Proceedings. 10th International Conference
on Pattern Recognition, volume ii, pages 35–40 vol.2, June 1990.

[PKB13] Nazil Perveen, Darshan Kumar, and Ishan Bhardwaj. An overview on template
matching methodologies and its applications. International Journal of Research
in Computer and Communication Technology, 2(10):988–995, 2013.

[SNS11] R. Siegwart, I. R. Nourbakhsh, and D. Scaramuzza. Introduction to Autonomous
Mobile Robots. MIT press, 2011.

11

[Sze10] Richard Szeliski. Computer vision: algorithms and applications. Springer Science
& Business Media, 2010.

12

